6 research outputs found

    Cohort study of somatostatin-based radiopeptide therapy with [(90)Y-DOTA]-TOC versus [(90)Y-DOTA]-TOC plus [(177)Lu-DOTA]-TOC in neuroendocrine cancers

    No full text
    PURPOSE: Radiopeptide therapy is commonly performed with a single radioisotope. We aimed to compare the effectiveness of somatostatin-based radiopeptide therapy with a single versus a combination of radioisotopes. PATIENTS AND METHODS: In a cohort study, patients with metastasized neuroendocrine cancer were treated with repeated cycles of (90)yttrium-labeled tetraazacyclododecane-tetraacetic acid modified Tyr-octreotide ([(90)Y-DOTA]-TOC) or with cycles alternating between [(90)Y-DOTA]-TOC and (177)lutetium-labeled DOTA-TOC ([(177)Lu-DOTA]-TOC) until tumor progression or permanent toxicity. Multivariable Cox regression and competing risk regression were used to study predictors of survival and renal toxicity in patients completing three or more treatment cycles. RESULTS: A total of 486 patients completed three or more treatment cycles; 237 patients received [(90)Y-DOTA]-TOC and 249 patients received [(90)Y-DOTA]-TOC + [(177)Lu-DOTA]-TOC. Patients receiving [(90)Y-DOTA]-TOC + [(177)Lu-DOTA]-TOC had a significantly longer survival than patients receiving [(90)Y-DOTA]-TOC alone (5.51 v 3.96 years; hazard ratio, 0.64; 95% CI, 0.47 to 0.88; P = .006). The rates of severe hematologic toxicities (6.3% v 4.4%; P = .25) and severe renal toxicity (8.9% v 11.2%; P = .47) were comparable in both groups. CONCLUSION: [(90)Y-DOTA]-TOC + [(177)Lu-DOTA]-TOC was associated with improved overall survival compared with [(90)Y-DOTA]-TOC alone in patients completing three or more cycles of treatment. Contrary to the current practice in radiopeptide therapy, our results suggest an advantage of using a combination of radioisotope

    Phosphor Systems for Illumination Quality Solid State Lighting Products: Final Technical Report

    No full text
    The objective of this program is to develop phosphor systems that will enable LED lamps with 96 lm/W efficacy at correlated color temperatures, (CCTs) ~3000 K, and color rendering indices (CRIs) >80 and 71 lm/W efficacy at CCT<3100 K and CRI~95 using phosphor downconversion of LEDs. This primarily involves the invention and development of new phosphor materials that have improved efficiency and better match the eye sensitivity curves

    The effect of walking on risk factors for cardiovascular disease: An updated systematic review and meta-analysis of randomised control trials

    Get PDF
    noObjective To conduct a systematic review and meta-analysis of randomised control trials that examined the effect of walking on risk factors for cardiovascular disease. Methods Four electronic databases and reference lists were searched (Jan 1971–June 2012). Two authors identified randomised control trials of interventions ≄ 4 weeks in duration that included at least one group with walking as the only treatment and a no-exercise comparator group. Participants were inactive at baseline. Pooled results were reported as weighted mean treatment effects and 95% confidence intervals using a random effects model. Results 32 articles reported the effects of walking interventions on cardiovascular disease risk factors. Walking increased aerobic capacity (3.04 mL/kg/min, 95% CI 2.48 to 3.60) and reduced systolic (− 3.58 mm Hg, 95% CI − 5.19 to − 1.97) and diastolic (− 1.54 mm Hg, 95% CI − 2.83 to − 0.26) blood pressure, waist circumference (− 1.51 cm, 95% CI − 2.34 to − 0.68), weight (− 1.37 kg, 95% CI − 1.75 to − 1.00), percentage body fat (− 1.22%, 95% CI − 1.70 to − 0.73) and body mass index (− 0.53 kg/m2, 95% CI − 0.72 to − 0.35) but failed to alter blood lipids. Conclusions Walking interventions improve many risk factors for cardiovascular disease. This underscores the central role of walking in physical activity for health promotion

    Phase 1 and pharmacokinetic study of bolus-infusion flavopiridol followed by cytosine arabinoside and mitoxantrone for acute leukemias

    No full text
    Flavopiridol is a protein bound, cytotoxic, cyclin-dependent kinase inhibitor. Flavopiridol given by 1-hour bolus at 50 mg/m2 daily 3 times followed by cytosine arabinoside and mitoxantrone (FLAM) is active in adults with poor-risk acute leukemias. A pharmacologically derived “hybrid” schedule (30-minute bolus followed by 4-hour infusion) of flavopiridol was more effective than bolus administration in refractory chronic lymphocytic leukemia. Our phase 1 trial “hybrid FLAM” in 55 adults with relapsed/refractory acute leukemias began at a total flavopiridol dose of 50 mg/m2 per day 3 times (20-mg/m2 bolus, 30-mg/m2 infusion). Dose-limiting toxicity occurred at level 6 (30-mg/m2 bolus, 70-mg/m2 infusion) with tumor lysis, hyperbilirubinemia, and mucositis. Death occurred in 5 patients (9%). Complete remission occurred in 22 (40%) across all doses. Overall and disease-free survivals for complete remission patients are more than 60% at more than 2 years. Pharmacokinetics demonstrated a dose-response for total and unbound plasma flavopiridol unrelated to total protein, albumin, peripheral blast count, or toxicity. Pharmacodynamically, flavopiridol inhibited mRNAs of multiple cell cycle regulators, but with uniform increases in bcl-2. “Hybrid FLAM” is active in relapsed/refractory acute leukemias, with a recommended “hybrid” dose of bolus 30 mg/m2 followed by infusion of 60 mg/m2 daily for 3 days. This clinical trial is registered at www.clinicaltrials.gov as #NCT00470197

    Efficacy and safety of baricitinib in hospitalized adults with severe or critical COVID-19 (Bari-SolidAct): a randomised, double-blind, placebo-controlled phase 3 trial

    No full text
    International audienceAbstract Background Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. Methods Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. Results Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49–69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI − 0.1% [− 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (− 3.2% [− 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. Conclusion This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 )
    corecore