21 research outputs found

    Would raising the total cholesterol diagnostic cut-off from 7.5 mmol/L to 9.3 mmol/L improve detection rate of patients with monogenic familial hypercholesterolaemia?

    Get PDF
    A previous report suggested that 88% of individuals in the general population with total cholesterol (TC)>9.3mmol/L have familial hypercholesterolaemia (FH). We tested this hypothesis in a cohort of 4896 UK civil servants, mean (SD) age 44 (±6) years, using next generation sequencing to achieve a comprehensive genetic diagnosis. 25 (0.5%) participants (mean age 49.2 years) had baseline TC>9.3mmol/L, and overall we found an FH-causing mutation in the LDLR gene in seven (28%) subjects. The detection rate increased to 39% by excluding eight participants with triglyceride levels over 2.3mmol/L, and reached 75% in those with TC>10.4mmol/L. By extrapolation, the detection rate would be ~25% by including all participants with TC>8.6mmol/L (2.5 standard deviations from the mean). Based on the 1/500 FH frequency, 30% of all FH-cases in this cohort would be missed using the 9.3mmol/L cut-off. Given that an overall detection rate of 25% is considered economically acceptable, these data suggest that a diagnostic TC cut-off of 8.6mmol/L, rather than 9.3mmol/L would be clinically useful for FH in the general population

    Individuality and stability of the koala (Phascolarctos cinereus) faecal microbiota through time

    Get PDF
    Gut microbiota studies often rely on a single sample taken per individual, representing a snapshot in time. However, we know that gut microbiota composition in many animals exhibits intra-individual variation over the course of days to months. Such temporal variations can be a confounding factor in studies seeking to compare the gut microbiota of different wild populations, or to assess the impact of medical/veterinary interventions. To date, little is known about the variability of the koala (Phascolarctos cinereus) gut microbiota through time. Here, we characterise the gut microbiota from faecal samples collected at eight timepoints over a month for a captive population of South Australian koalas (n individuals = 7), and monthly over 7 months for a wild population of New South Wales koalas (n individuals = 5). Using 16S rRNA gene sequencing, we found that microbial diversity was stable over the course of days to months. Each koala had a distinct faecal microbiota composition which in the captive koalas was stable across days. The wild koalas showed more variation across months, although each individual still maintained a distinct microbial composition. Per koala, an average of 57 (±16) amplicon sequence variants (ASVs) were detected across all time points; these ASVs accounted for an average of 97% (±1.9%) of the faecal microbial community per koala. The koala faecal microbiota exhibits stability over the course of days to months. Such knowledge will be useful for future studies comparing koala populations and developing microbiota interventions for this regionally endangered marsupial.Raphael Eisenhofer, Kylie L. Brice, Michaela DJ Blyton, Scott E. Bevins, Kellie Leigh, Brajesh K. Singh, Kristofer M. Helgen, Ian Hough, Christopher B. Daniels, Natasha Speight and Ben D. Moor

    Age at symptom onset and death and disease duration in genetic frontotemporal dementia : an international retrospective cohort study

    Get PDF
    Background: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. Methods: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. Findings: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49\ub75 years (SD 10\ub70; onset) and 58\ub75 years (11\ub73; death) in the MAPT group, 58\ub72 years (9\ub78; onset) and 65\ub73 years (10\ub79; death) in the C9orf72 group, and 61\ub73 years (8\ub78; onset) and 68\ub78 years (9\ub77; death) in the GRN group. Mean disease duration was 6\ub74 years (SD 4\ub79) in the C9orf72 group, 7\ub71 years (3\ub79) in the GRN group, and 9\ub73 years (6\ub74) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0\ub745 between individual and parental age at onset, r=0\ub763 between individual and mean family age at onset, r=0\ub758 between individual and parental age at death, and r=0\ub769 between individual and mean family age at death) than in either the C9orf72 group (r=0\ub732 individual and parental age at onset, r=0\ub736 individual and mean family age at onset, r=0\ub738 individual and parental age at death, and r=0\ub740 individual and mean family age at death) or the GRN group (r=0\ub722 individual and parental age at onset, r=0\ub718 individual and mean family age at onset, r=0\ub722 individual and parental age at death, and r=0\ub732 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35\u201362, for age at onset; 61%, 47\u201373, for age at death), and even more by family membership (66%, 56\u201375, for age at onset; 74%, 65\u201382, for age at death). In the GRN group, only 2% (0\u201310) of the variability of age at onset and 9% (3\u201321) of that of age of death was explained by the specific mutation, whereas 14% (9\u201322) of the variability of age at onset and 20% (12\u201330) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11\u201326) of the variability of age at onset and 19% (12\u201329) of that of age at death. Interpretation: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. Funding: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies

    Signal strength in sub-annual tree-ring chronologies from Pinus ponderosain northern New Mexico

    No full text
    The creation of chronologies from intra-annual features in tree rings is increasingly utilized in dendrochronology to create season-specific climate histories, among other applications. A conifer latewood-width network has recently been developed for the southwestern United States, but considerable uncertainty remains in understanding site and species differences in signal strength and sample depth requirements. As part of the 22nd annual North American Dendroecological Fieldweek, the first Pinus ponderosa earlywood-width (EW) and latewood-width (LW) chronologies were developed for the Jemez Mountains in northern New Mexico. The aim was to extend an existing total ring-width (TW) chronology and to assess the potential for creating long LW chronologies. Analysis of chronology signal strength suggests that large sample size requirements remain a considerable hurdle for creating P. ponderosa LW chronologies longer than 400 years. At the Cat Mesa site, twenty-three sample trees were required to capture a statistically acceptable common signal in adjusted latewood (LWa), whereas only four samples were required for EW. This is significantly higher than sample depth requirements for LWa from the few other chronologies in the region where this statistic has been reported. A future priority should be to develop a conceptual guide for site and tree selection in order to maximize the potential for enhancing LW signal and for creating a robust network of multi-century LW chronologies.This item is part of the Tree-Ring Research (formerly Tree-Ring Bulletin) archive. For more information about this peer-reviewed scholarly journal, please email the Editor of Tree-Ring Research at [email protected]

    Polygonal faults-furrows system related to early stages of compaction-Upper Miocene to present sediments of the Lower Congo Basin

    No full text
    A new polygonal fault system has been identified in the Lower Congo Basin. This highly faulted interval (HFI), 700±50 m thick, is characterized by small extensional faults displaying a polygonal pattern in plan view. This kind of fracturing is attributed to volumetric contraction of sediments during early stages of compaction at shallow burial depth. 3-D seismic data permitted the visualization of the progressive deformation of furrows during burial, leading to real fractures, visible on seismic sections at about 78 m below seafloor. We propose a new geometrical model for volumetrical contraction of mud-dominated sediments. Compaction starts at the water–sediment interface by horizontal contraction, creating furrows perpendicular to the present day slope. During burial, continued shrinkage evolves to radial contraction, generating hexagonal cells of dewatering at 21 m below seafloor. With increasing contraction, several faults generations are progressively initiated from 78 to 700 m burial depth. Numerous faults of the HFI act as highly permeable pathways for deeper fluids. We point out that pockmarks, which represent the imprint of gas, oil or pore water escape on the seafloor, are consistently located at the triple-junction of three neighbouring hexagonal cells. This is highly relevant for predictive models of the occurrence of seepage structures on the seafloor and for the sealing capacity of sedimentary cover over deeper petroleum reservoirs.<br/

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P=1 × 10) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P=8.4 × 10). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies
    corecore