79 research outputs found

    O-GlcNAcylation Increases ChREBP Protein Content and Transcriptional Activity in the Liver

    Get PDF
    International audienceOBJECTIVE Carbohydrate-responsive element–binding protein (ChREBP) is a key transcription factor that mediates the effects of glucose on glycolytic and lipogenic genes in the liver. We have previously reported that liver-specific inhibition of ChREBP prevents hepatic steatosis in ob/ob mice by specifically decreasing lipogenic rates in vivo. To better understand the regulation of ChREBP activity in the liver, we investigated the implication of O-linked β-N-acetylglucosamine (O-GlcNAc or O-GlcNAcylation), an important glucose-dependent posttranslational modification playing multiple roles in transcription, protein stabilization, nuclear localization, and signal transduction. RESEARCH DESIGN AND METHODS O-GlcNAcylation is highly dynamic through the action of two enzymes: the O-GlcNAc transferase (OGT), which transfers the monosaccharide to serine/threonine residues on a target protein, and the O-GlcNAcase (OGA), which hydrolyses the sugar. To modulate ChREBPOG in vitro and in vivo, the OGT and OGA enzymes were overexpressed or inhibited via adenoviral approaches in mouse hepatocytes and in the liver of C57BL/6J or obese db/db mice. RESULTS Our study shows that ChREBP interacts with OGT and is subjected to O-GlcNAcylation in liver cells. O-GlcNAcylation stabilizes the ChREBP protein and increases its transcriptional activity toward its target glycolytic (L-PK) and lipogenic genes (ACC, FAS, and SCD1) when combined with an active glucose flux in vivo. Indeed, OGT overexpression significantly increased ChREBPOG in liver nuclear extracts from fed C57BL/6J mice, leading in turn to enhanced lipogenic gene expression and to excessive hepatic triglyceride deposition. In the livers of hyperglycemic obese db/db mice, ChREBPOG levels were elevated compared with controls. Interestingly, reducing ChREBPOG levels via OGA overexpression decreased lipogenic protein content (ACC, FAS), prevented hepatic steatosis, and improved the lipidic profile of OGA-treated db/db mice. CONCLUSIONS Taken together, our results reveal that O-GlcNAcylation represents an important novel regulation of ChREBP activity in the liver under both physiological and pathophysiological conditions

    Tuning transcription factor availability through acetylation-mediated genomic redistribution

    Get PDF
    It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability

    Involvement of SIK3 in Glucose and Lipid Homeostasis in Mice

    Get PDF
    Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3−/− mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3−/− mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3−/− mice. Lipid metabolism disorders in Sik3−/− mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice

    Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function

    Get PDF
    Objective The goal of the study was to investigate the role of histone deacetylases (HDACs) in adipocyte function associated with obesity and hypoxia. Methods Total proteins and RNA were prepared from human visceral adipose tissues (VAT) of human obese and normal weight subjects and from white adipose tissue (WAT) of C57Bl6-Rj mice fed a normal or high fat diet (HFD) for 16 weeks. HDAC activity was measured by colorimetric assay whereas the gene and protein expression were monitored by real-time PCR and by western blotting, respectively. RNA interference (RNAi) was used to silence the expression of genes in 3T3-L1 adipocytes. Results Total HDAC activity was decreased in VAT and WAT from obese individuals and from mice fed a HFD, respectively. The HDAC activity reduction was associated with decreased HDAC5/Hdac5 and HDAC6/Hdac6 expression in human and mice adipocyte fraction. Similarly, hypoxia hampered total Hdac activity and reduced the expression of Hdac5 and Hdac6 in 3T3-L1 adipocytes. The decrease of both Hdac5 and Hdac6 by hypoxia was associated with altered expression of adipokines and of the inducible cAMP early repressor (Icer), a key repressor that is defective in human and mice obesity. Silencing of Icer in adipocytes reproduced the changes in adipokine levels under hypoxia and obesity, suggesting a causative effect. Finally, modeling the defect of the two Hdacs in adipocytes by RNAi or selective inhibitors mimicked the effects of hypoxia on the expression of Icer, leading to impairment of insulin-induced glucose uptake. Conclusion Hdac5 and Hdac6 expression are required for the adequate expression of Icer and adipocyte function. Altered adipose expression of the two Hdacs in obesity by hypoxia may contribute to the development of metabolic abnormalities

    The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity

    No full text
    International audienceAberrant histone methylation profile is reported to correlate with the development and progression of NAFLD during obesity. However, the identification of specific epigenetic modifiers involved in this process remains poorly understood. Here, we identify the histone demethylase Plant Homeodomain Finger 2 (Phf2) as a new transcriptional co-activator of the transcription factor Carbohydrate Responsive Element Binding Protein (ChREBP). By specifically erasing H3K9me2 methyl-marks on the promoter of ChREBP-regulated genes, Phf2 facilitates incorporation of metabolic precursors into mono-unsaturated fatty acids, leading to hepatosteatosis development in the absence of inflammation and insulin resistance. Moreover, the Phf2-mediated activation of the transcription factor NF-E2-related factor 2 (Nrf2) further reroutes glucose fluxes toward the pentose phosphate pathway and glutathione biosynthesis, protecting the liver from oxidative stress and fibrogenesis in response to diet-induced obesity. Overall, our findings establish a downstream epigenetic checkpoint, whereby Phf2, through facilitating H3K9me2 demethylation at specific gene promoters, protects liver from the pathogenesis progression of NAFL
    corecore