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14CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec G1V 4G2, QC, Canada
15These authors contributed equally
16Lead Contact

*Correspondence: mazza.davide@hsr.it (D.M.), colin.goding@ludwig.ox.ac.uk (C.R.G.)

https://doi.org/10.1016/j.molcel.2020.05.025
SUMMARY
It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation
by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors
find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the
melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a
competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein ki-
nase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Conse-
quently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development
and drives tumorigenesis, whereas a high-affinity non-acetylatablemutant does not. The results reveal a par-
adoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide
redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding pro-
tein-mediated transcription factor acetylation may represent a common mechanism to control transcription
factor availability.
INTRODUCTION

Transcription factors interpret and integrate the output from

signal transduction pathways to impose gene expression pro-

grams that underpin development and homeostasis, while their

deregulation drives cancer progression. The recognition of

specific DNA sequence elements in promoter or enhancer re-
Molecular Cell 79, 1–16
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gions determines which genes are regulated by individual

transcription factors. The repertoire of sites available is restricted

by nucleosomes, but for the binding motifs that are accessible,

occupancy is determined by a combination of abundance and

affinity of the transcription factor for DNA, combined with the

affinity of the binding site for the transcription factor. Increasing

the dwell time of a transcription factor on a DNA-recognition
, August 6, 2020 ª 2020 The Authors. Published by Elsevier Inc. 1
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Figure 1. Genome-wide Binding by MITF
(A) Genome browser screenshots derived from ChIP-seq using anti-HA antibody of 501mel cells stably expressing ectopic HA-tagged MITF.

(B) Consensus motif for the most significant 900 genome-wide MITF-binding sites predicted from 60-bp regions around peak summits generated by MEME.

(C) The proportion of peaks with or without a 50-TCA(T/C)GTGN-30 motif at different peak heights.

(D) Relationship between motif frequency and peak height as in (C).

(legend continued on next page)
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element will lead to increased transcription (Lickwar et al., 2012).

Consequently, it is widely assumed that decreasing the affinity of

a transcription factor for DNA will impair its capacity for gene

regulation. However, for each sequence-specific regulatory

element, the genome contains many more degenerate variants

that could potentially act as a competitive reservoir to titrate tran-

scription factor availability. In principle, regulating a transcription

factor’s DNA-binding affinity could facilitate exchange between

such a reservoir and its regulatory elements. Whether mamma-

lian cells use regulated genome-mediated titration to tune the

effective concentration of a transcription factor is not known.

The wide-ranging biological functions and defined target

elements of the basic-helix-loop-helix-leucine zipper (bHLH-LZ)

microphthalmia-associated transcription factor MITF (Hodgkin-

son et al., 1993) in melanoma and melanocyte biology make

it an excellent model for understanding transcription factor dy-

namics in mammalian cells. MITF (Goding and Arnheiter, 2019),

a lineage survival oncogene (Garraway et al., 2005), coordinates

differentiation, regulates proliferation, suppresses migration/inva-

siveness and tumor-initiation capacity, and controls lysosome

biogenesis, autophagy, and drug sensitivity (Carreira et al.,

2005, 2006; Cheli et al., 2011; Dugo et al., 2015; Hoek et al.,

2008; Konieczkowski et al., 2014; M€uller et al., 2014; Ploper

et al., 2015; Zhang et al., 2015; Möller et al., 2019). It also sup-

presses senescence (Giuliano et al., 2010). Like other bHLH or

bHLH-LZ family members, MITF recognizes 6-bp E-box motifs,

with flanking sequences permittingMITF and other E-box-binding

factors to discriminate between related target sites (Aksan and

Goding, 1998; Blackwell and Weintraub, 1990; Fisher et al.,

1993; Fisher and Goding, 1992; Hejna et al., 2019; Solomon

et al., 1993). Despite the key role of MITF in melanoma progres-

sion, surprisingly little is known about how its target gene selec-

tivity is modulated. Although mitogen-activated protein kinase

(MAPK) signaling regulates MITF nuclear export (Ngeow et al.,

2018) and enhances interaction with the transcription cofactor

CREB-binding protein (CBP)/p300 (Price et al., 1998), how the de-

regulated BRAForNRAS signaling that drivesmelanomaprogres-

sion otherwise affects MITF’s capacity to regulate gene expres-

sion is poorly understood.

Here, we reveal that paradoxically, BRAF-activated p300-

mediated acetylation of a transcription factor can increase its

function in vivo by decreasing its DNA-binding affinity.

RESULTS

Genome-wide Distribution of MITF
Differentiation-associated MITF target genes possess a

conserved M-box (Lowings et al., 1992) comprising a CATGTG

E-box motif flanked by 50T and/or 30A residues (Aksan and God-

ing, 1998). By contrast, several MITF targets apparently have E-

box elements lacking the 50T and 30A flanking residues including

MET, KIT, BCL2, HPGDS, and TPSB2 (Cheli et al., 2010). How

MITF might discriminate between these binding sites is not
(E) Sequences associated with a selection of differentiation or non-differentiation

(F) Box and whisker plots of peak height related to motif. Center of notches indica

of well-characterized differentiation-associated genes in addition to many other

See also Figure S1 and Table S1.
known. To address this issue, we performed chromatin immuno-

precipitation coupled to high-throughput DNA sequencing

(ChIP-seq) using an established (Laurette et al., 2015) 501mel

melanoma cell line expressing hemagglutinin (HA)-epitope-

tagged MITF (Figures S1A and S1B, upper panel). The results

confirmed binding to known MITF target genes, including

differentiation genes containing conserved CATGTG motifs

such as TYR (Figure 1A; Figure S1B, lower panel); TRPM1 and

DCT (Figure 1A); ATF4, a mediator of the integrated stress

response; and LAMP1 and HEXA, lysosomal biogenesis genes

that contain CACGTG-binding motifs. In each case, the core 6-

bp binding motif was flanked by 50T and/or 30A residues that

differentiate betweenMITF andMYC targets (Aksan andGoding,

1998; Fisher et al., 1993; Fisher and Goding, 1992; Hejna et al.,

2019; Solomon et al., 1993). No binding was observed at the

mast-cell-specific HPGDS and TPSB2 loci. At the MET, KIT, or

BCL2 genes, MITF recognized intronic motifs (Figure S1C),

rather than their promoters as reported previously (McGill

et al., 2002, 2006; Tsujimura et al., 1996). Thus, MITF-binding

sites contain motifs with a 50T and/or 30A and flanking sequences

do not distinguish between targets associated with MITF’s

different biological functions such as proliferation or differentia-

tion. Consistent with this, the consensus motif for MITF recogni-

tion was TCACGTGA (Figure 1B), reflecting that CACGTGmotifs

are enriched among the highest affinity binding sites.

MITF ChIP peak heights varied between genes (Figure 1A) and

the proportion of peaks with binding motifs increased with peak

height (Figure 1C). Of the peaks called, high peak heights were

associated with CACGTG elements with the flanking T-residue

characteristic of MITF binding, whereas CATGTG motifs related

to the differentiation-associated M-box sequence exhibited

lower peak heights, consistent with a lower affinity for MITF (Fig-

ure 1D). As reported previously (Goding, 2000), differentiation-

associated genes, with the exception ofMLANA, which contains

a CACGTG element, possess core CATGTG motifs and exhibit

peak heights between 60 and 100 (Figure 1E). By contrast,

many other MITF targets, frequently associated with proliferation

or lysosome biogenesis genes (Ploper et al., 2015; Zhang et al.,

2015), had substantially higher peak heights (Figure 1E).

Analyzing peak height distribution relative to motif beneath the

peak (Figures 1F and S1D) revealed that the highest ChIP peaks

(median height, 152) possessed double MITF 8-bp binding sites

and the next-highest possessed single TCACGTGA motifs (me-

dian height, 51). The more than additive peak heights associated

with double binding sites suggest that MITF dimers may bind

cooperatively. Thus, peak heights tend to diminish with varia-

tions from the consensus 8-bp TCACGTGA element, indicating

that for most sites, peak height reflects the binding motif. Note

that the median peak height corresponded well to the MITF-

bound sequence (Figure 1F), but each motif was associated

with a considerable range, most likely reflecting the position of

each recognition element relative to nucleosomes or binding

sites for cooperating transcription factors.
-associated MITF target genes.

tes the median. Green box indicates range of peak heights within which lie a set

non-differentiation genes.
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Figure 2. MITF Can Be Acetylated

(A) Indicated expression vectors were transfected into Phoenix cells and input and anti-FLAG immunoprecipitates western blotted.

(B) Western blot of 501mel cells treated with 200 nM TPA for indicated times.

(C) Western blot of extracts from cells transfected with BRAF and/or p300 expression vectors.

(D) Western blot of Phoenix cells transfected with indicated vectors and HA-MITF, ±20 mM U0126 immunoprecipitated using anti-HA antibody.

(E) Schematic showing the melanocyte-specific MITF-M(+) isoform. The five acetylated lysine residues identified in MITF-M peptides by mass spectrometry are

indicated below. ERK, p38, and RSK phosphorylation sites are indicated above with the CBP/p300-binding site.

(F) MITF DNA-binding domain-DNA co-crystal structure showing the MITF K243-DNA phosphate-backbone contact.

(G) Conservation of K243 between bHLH and bHLH-LZ family members.

(legend continued on next page)
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Although TCATGTGA elements bound MITF less well than

TCACGTGA motifs (Figure 1F), the range of peak heights for dif-

ferentiation genes (60–100) (Figure 1E; Table S1) was similar to

the top range of TCACGTGA elements. It was also among the

very highest for TCATGTGA motifs in general (Figure 1F); of

23,500 peaks with single TCATGTGA motifs bound by MITF,

almost 19,000 exhibited peaks lower than the bottom end of

the range, and only 0.2% had peak heights above. Since

peak height may reflect affinity for a particular element, DNA-

binding affinity does not distinguish between well-characterized

differentiation-associated MITF targets and non-differentiation

MITF targets.

To eliminate the possibility that the expression of HA-tagged

MITF and the endogenous protein could produce different re-

sults, we also re-analyzed a ChIP-seq dataset obtained from

melanocytes using an anti-MITF antibody (Webster et al.,

2014). The results were similar with differences likely accounted

for by the reduced number of peaks in the Webster et al. dataset

compared to ours, reflecting the high ChIP efficiency when using

the anti-HA antibody. Thus, the consensus MITF recognition

motif is similar (Figure S1E), mean peak height tends to reduce

when the binding site varies from the consensus (Figure S1F)

and binding to genes such as ATF4 and LAMP1 is located in a

similar position (Figure S1G).

MITF Is Acetylated on a Highly Conserved Phosphate-
Backbone-Interacting Lysine
DNA-binding affinity is dictated by a combination of base-spe-

cific contacts that provide sequence specificity and contacts

with the phosphate backbone. We hypothesized that as MIT-

F-occupied sites exhibit a wide range of peak heights, the

relative distribution of MITF binding between low- and high-affin-

ity targets might be regulated through alteration of MITF’s

DNA-binding affinity.

The CBP and p300 lysine acetyl transferases are cofactors for

a wide range of transcription factors and are proposed to facili-

tate transcription activation via histone acetylation. However,

CBP and p300 also acetylate transcription factors (Boyes

et al., 1998; Bricambert et al., 2010; Ceseña et al., 2007; Daitoku

et al., 2004; Giandomenico et al., 2003; Gu and Roeder, 1997;

Perrot and Rechler, 2005; Ponugoti et al., 2010). As MITF inter-

acts with CBP and p300 (Price et al., 1998; Sato et al., 1997),

we askedwhether MITF is acetylated. Examination of MITF acet-

ylation was initially frustrated by an inability to extract the protein

from the nuclei of IGR37 or 501mel melanoma cells; using

increasingly stringent conditions, including lysonase to digest

nucleic acid or 2 MNaCl, the great majority of MITF was retained

in the nuclear pellet (Figure S2A). By contrast the bHLH-LZ factor

USF or the POU domain transcription factor BRN2 were readily

extracted. To circumvent this problem, we co-expressed

epitope-tagged MITF with CBP or p300 to generate sufficient

soluble MITF for immunoprecipitation. Western blotting using

anti-acetyl lysine antibody after immunoprecipitation revealed
(H) Peptide array containing indicated residues as 14-amino-acid peptides immo

(I) Western blot using anti-acetyl K243 or anti-MITF antibodies of immunoprecip

(J) Western blot using anti-acetyl K243 or anti-MITF antibodies of HIS-tagged M

See also Figure S2.
both CBP and p300 substantially increased MITF acetylation

(Figure 2A).

Since the MAPK pathway is frequently activated in melanoma

via mutation of BRAF or NRAS and p300 acetyl transferase

activity is enhanced by MAPK-mediated phosphorylation in

keratinocytes (Chen et al., 2007), we asked whether MAPK

signaling activates acetylation in melanoma. Stimulation of

melanoma cells with 12-O-tetradecanoylphorbol-13-acetate

(TPA) transiently activated MAPK signaling detected using anti-

phospho-ERK antibody, followed by a prolonged increase in his-

tone H3 acetylation (Figure 2B). Cells were also transfected with

expression vectors for Myc-epitope-tagged BRAFV600E, HA-

tagged p300, or both, and whole-cell extracts were probed

with anti-acetyl lysine antibody. Whereas p300 increased

acetylation compared to untransfected cells, no increase was

observed in cells transfected with BRAFV600E alone, though

phospho-ERK levels were increased (Figure 2C). By contrast,

co-transfection of BRAFV600E together with p300 dramatically

increased global acetylation. In agreement, MITF acetylation

driven by either p300 or CBP was blocked using the MEK

inhibitor U0126 (Figure 2D). These data suggest that MITF

acetylation is increased by activation of MAPK signaling, a

hallmark of melanoma.

Mass spectrometry of immunoprecipitated Myc-tagged

MITF revealed acetylation on five lysines (K21, K33, K43,

K243, and K248) (Figures 2E, S2B, and S2C). Significantly,

the MITF-DNA co-crystal structure (Pogenberg et al., 2012) re-

vealed that K243, located at the 30 end of the bHLH-LZ loop,

makes a phosphate backbone contact but does not bind any

base (Figure 2F). MITF K243 is highly conserved between

species and most bHLH and bHLH-LZ transcription factors

(Figure 2G) and makes a similar phosphate-backbone contact

in all available crystal structures (Figure S2D). By contrast,

K248 does not contact the DNA and is poorly conserved,

except in the MITF family. Molecular modeling (Figure S2E)

suggested that acetylation of K243 in MITF would disrupt the

phosphate backbone contact. As such, acetylation of K243

should reduce the affinity of MITF for DNA without directly

altering its target specificity.

To confirm acetylation of MITF K243, we generated an anti-

acetyl-MITF-K243 antibody. Using an array of MITF peptides

containing acetyl and non-acetyl residues corresponding to

K243 or other acetylated lysines (K21, K33, and K43), control

MITF residues (K205 and K206), or histone H3 peptides contain-

ing K27 and K9 (Figure 2H), we determined that the antibody was

largely specific for the acetyl-K243 residue. The anti-acetyl-

MITF-K243 antibody efficiently recognized immunoprecipitated

MITF-GFP co-expressed with p300 or CBP (Figure 2I) or stably

expressed polyhistidine-tagged MITF (purified using nickel

beads after urea extraction) without ectopic p300 or CBP (Fig-

ure 2J). Note that despite extensivemass spectrometry analyses

for this and other studies, we have not identified any other post-

translational modification on this residue.
bilized on a cellulose membrane probed with rabbit anti-acetyl-K243 antibody.

itated GFP-MITF expressed alone or with co-transfected CBP or p300.

ITF purified with nickel beads. All samples were from the same blot.

Molecular Cell 79, 1–16, August 6, 2020 5



Figure 3. K243 Status Determines MITF DNA-Binding Affinity

(A) Comparison of circular dichroism (CD) spectra of bacterially expressed and purifiedMITFWT andmutant DNA-binding domains. Themean residue ellipticity is

plotted in dg 3 cm2 3 dmol�1 against the wavelength (in nm). CD spectra show the mutations cause no major structural changes.

(B) DNA-binding affinity of bacterially expressed and purified MITF WT and mutant DNA-binding domains determined using fluorescence anisotropy. Repre-

sentative titration curves of each fluorescein-labeled oligonucleotide with MITF WT and mutants. The anisotropy values are the average of triplicate measure-

ments from which the baseline corresponding to the anisotropy of the free fluorescent probe was subtracted.

(C) The dissociation constants of MITF WT and mutants on oligonucleotides containing four different recognition sequences determined by fluorescence

anisotropy.
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To confirm that K243 impacts MITF DNA-binding affinity, we

bacterially expressed and purified the wild-type (WT) MITF

DNA-binding domain as well as K243R and K243Q mutants.

Molecular modeling (Figure S2E) predicted that a K243R

mutant would maintain the phosphate backbone contact,

whereas the glutamine substitution, widely used as an imper-

fect acetylation mimetic (Mishra et al., 2016; Wang and Hayes,

2008), would break the contact and consequently impair DNA

binding. Characterization of the proteins by circular dichroism

indicated that both mutants had a similar structure to the WT

(Figure 3A).

We next used fluorescence anisotropy to determine the

in vitro DNA-binding affinity of all three proteins on four

different binding sites: a full consensus 8-bp TCACGTGA

motif termed a coordinated lysosomal expression and regula-

tion (CLEAR) box, a CACGTG E-box lacking the key flanking

50T and 30A residues, a TCATGTGT M-box motif associated

with the tyrosinase promoter, and a mutated (half-site) CLEAR

box as a negative control. The DNA-binding data (Figure 3B)

and summary of affinities (Figure 3C) revealed the WT protein

bound the CLEAR box with the highest affinity and that MITF

exhibited around an 11-fold reduced affinity for the differenti-

ation-associated M-box element. Compared to WT MITF, the

K243R mutant bound �4-fold less well on all sites. The DNA-

binding affinity of the K243Q mutant was further reduced
6 Molecular Cell 79, 1–16, August 6, 2020
compared to the K243R mutant. K243Q bound the CLEAR

box almost 7-fold less well than the WT protein and 2-fold

less than the K243R mutant. Binding by the K243Q mutant

was 21-fold reduced compared to the WT on an E-box and

35-fold reduced compared to the WT on an M-box, and it ex-

hibited 5-fold and 8.7-fold reduced binding to these elements,

respectively, compared to the K243R mutant. The binding af-

finity of all three proteins was further reduced when using the

mutated CLEAR box element, but it was especially low for the

K243Q mutant. In summary, the in vitro DNA-binding affinities

of the WT and K243R and K243Q mutants confirmed that

K243 contributes to the DNA-binding affinity of MITF and

that the K243Q acetylation mimetic reduced DNA-binding af-

finity substantially more than the K243R mutation.

K243 Plays a Critical Role in Development and
Tumorigenesis
To investigate the impact of K243 status in vivo, we used MITF

WT or mutants to complement the absence of MITF in an

mitfa-null nacre zebrafish. As expected, WT mitfa restored

melanocyte numbers (Figures 4A and S3). However, surpris-

ingly, the high-affinity DNA-binding K243R mutant (K238

in fish) was inactive, whereas the low-affinity K243Q

mutant effectively complemented the nacre mutation. Thus,

paradoxically, the K243Q mutant that binds DNA in vitro



Figure 4. K243 Controls MITF Function

In Vivo

(A) Complementation of neural crest MITFa-null

nacre zebrafish usingMITFWT andK238 (equivalent

to K243 in human MITF) mutants (left) and quantifi-

cation of numbers of melanocytes (right). The dots in

the plots represent numbers of melanocytes in each

rescued embryo with at least one melanocyte. See

also Figure S3.

(B) Western blot of 501mel cells stably expressing

HA-MITF WT and mutants (from the same gel).

(C) Tumor formation after subcutaneous inoculation

of indicated cell lines into athymic nude mice.

(D) Example tumors.

(E) Tumor size over time using indicated cell lines.

Error bars indicate S.E.M.
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substantially less well than the K243R mutant functions much

better in vivo.

In addition to its role in melanocyte development, MITF also

plays a key pro-proliferative role in melanoma (Goding and

Arnheiter, 2019; Carreira et al., 2006; Garraway et al., 2005;

Giuliano et al., 2010; Hoek and Goding, 2010; Widlund

et al., 2002). We therefore asked whether the status of K243

would affect melanoma growth by stably expressing

HA-tagged MITF WT and the K243R and K243Q mutants in

the poorly tumorigenic 501mel human melanoma cell line.

Western blotting revealed that the ectopic MITF, which runs

as two bands corresponding to hyper- and hypo-phosphory-

lated forms, was expressed �2- to 3-fold more than the

endogenous protein (Figure 4B). In culture, we were unable

to detect major differences in gene expression or proliferation

rate between cells expressing ectopic WT or mutant MITF (not

shown), likely owing to the expression of the endogenous

MITF. However, in vivo endogenous MITF can be transcrip-

tionally downregulated in xenograft tumors (Thurber et al.,

2011) as well as in human melanoma (Goodall et al., 2008).

We therefore asked whether the cell lines expressing WT

MITF or the K243R or K243Q MITF mutants exhibited differen-

tial tumor-forming potential following subcutaneous injection

into athymic nude mice. The results showed that parental

501mel cells failed to form tumors, whereas 501mel cells ex-

pressing HA-tagged WT MITF formed tumors in 3 out of 10

cases (Figures 4C–4E), consistent with MITF promoting

tumorigenesis. Cells expressing the MITF K243R mutant failed

to form tumors, but by contrast, K243Q-expressing cells

formed large rapidly growing tumors in 10 out of 10 cases.

The A375 melanoma cell line was used as a positive control.

Thus, MITF K243 status is a major determinant of melanoma

tumorigenicity as well as melanocyte development. Note

that whereas in the zebrafish assay or cells in culture, the
similar behavior of the WT and K243Q

mutant suggests functional MITF may

be highly acetylated, in the tumor-forma-

tion assay, WT MITF has an intermediate

phenotype between the K243R and the

K243Q mutants. This may indicate that

WT MITF in the tumor-formation assay

may be only partially acetylated, perhaps
because the microenvironment after subcutaneous injection is

very different from that in development or 501mel cells in

culture.

K243 Status Determines the Genome-wide Distribution
of MITF
The contrasting biological output from the K243R and K243Q

mutants was unlikely to arise because of differential co-factor

interactions, since mass spectrometry analysis (not shown)

failed to identify substantial differences in their associated

proteins. We therefore hypothesized that the K243R and

K243Q mutants would exhibit differential DNA binding in vivo.

To test this, we performed an initial ChIP-seq experiment on

human 501mel melanoma cells stably expressing similar levels

of HA-epitope-tagged MITF WT and K243R or K243Q mutants

(Figure S4A), an approach used previously to show altered

targeting of the melanoma-associated MITF E318K mutant

(Bertolotto et al., 2011). Some genes such as HEXA, which con-

tains two MITF target sites, exhibited little difference in occu-

pancy between WT and K243R or K243Q mutants (Figure S4A,

left). By contrast, theMITF K243Rmutant, but not K243Q, bound

less well than WT to differentiation-associated target genes

such as MLANA (Figure S4A, right). These data provided an

indication that on some genes, the K243R mutant exhibited

impaired binding compared to the lower affinity K243Q mutant.

To eliminate the possibility that the 2- to 3-fold elevated

MITF WT or mutant levels expression in the cell lines used for

the ChIP-seq could affect the outcome, we engineered 501mel

cells to express doxycycline-inducible HA-tagged MITF WT

and K243 mutants. Western blotting (Figure S4B) using different

concentrations of doxycycline revealed that the levels of ectopic

WT and mutant MITF could be titrated. At 0 ng doxycycline,

the ectopic MITF proteins were barely detectable, and at

20 ng, the levels were similar to the endogenous protein.
Molecular Cell 79, 1–16, August 6, 2020 7
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Immunofluorescence showed that all three proteins were

largely nuclear (Figure S4C).

Using the inducible cell lines, we repeated the ChIP-seq using

theWT andmutant HA-taggedMITF proteins at both 0 and 20 ng

doxycycline, with replicates exhibiting a high level of reproduc-

ibility (Figure S4D). Characterization of the ChIP efficiency and

ratio of peaks called/input indicated that while the K243Qmutant

behaved similarly to the WT protein, the K243R mutant bound

less well (Figure S4E). Examining peak distribution also showed

similar binding by the WT and K243Q mutant. The increase in

expression from 0 to 20 ng doxycycline was reflected in

increased binding genome-wide (Figure 5A). Again, binding by

the K243R mutant at 0 ng doxycycline was severely diminished

compared to the WT or K243Q mutants, but it was increased

at 20 ng. The total number of peaks called using WT MITF at

0 ng was close to 50,000, which increased to �100,000 at

20 ng, confirming that increasingMITF expression leads to occu-

pancy of more sites (Figure 5B). Similar results were obtained

with the K243Q mutant. By contrast, the K243R mutant bound

much less well, and even at 20 ng doxycycline, the number of

peaks was �30% of the WT or K243Q mutant. The average

read density centered on the peaks called revealed similar re-

sults for WT MITF and K243Q mutant, but the peak scores for

the K243R mutant were reduced �4-fold and 3-fold at 0 and

20 ng, respectively (Figure 5C).

Using the H3K27Ac epigenetic modification as a marker of

enhancers (Verfaillie et al., 2015) and 1 kb distance from the

transcription start site as promoter location, we found no differ-

ences in distribution of MITF WT or K243Q mutant. The great

majority of binding sites at both 0 or 20 ng doxycycline were

located either in enhancers or in non-promoter locations (Fig-

ure S4F). A slightly different profile was observed using the

K243Rmutant, where at 0 ng doxycycline, increased relative oc-

cupancy of promoter and enhancer sites was observed, but at

20 ng, the profile was similar to that of the WT and K243Q

mutant. The different distribution of K243R at 0 ng is most likely

related to the greatly reduced number of peaks called

(Figure 5B).

Examining individual MITF-regulated genes again revealed

that WT and MITF K243Q mutant bound similarly, but the

K243R mutant exhibited reduced binding, especially at those

genes with the lower affinity TCATGTG M-box elements such

as PMEL or DCT (Figures 5D and S4G). Comparing binding to

different motifs (Figure 5E) revealed that at 0 ng doxycycline,

the mean peak score was lower for K243R than WT, while that

of the K243Q mutant was higher, especially for genes bearing

two CLEAR-box motifs. At 20 ng doxycycline, where HA-tagged
Figure 5. K243 Status Determines MITF Genome-wide Distribution

(A) Heatmap of MITF WT and K243 mutant average tag density derived from two b

0 or 20 ng doxycycline centered on WT occupied regions (20 ng doxycycline).

(B) Numbers of ChIP peaks called using HA-tagged MITF WT or mutants induce

(C) Read coverage of two replicates for each of the WT and K243 mutant ChIP-se

coordinates of the WT at 5-bp binning intervals. Numbers on the x axis indicate

(D) Genome browser screenshots of indicated loci showing HA-taggedWT and m

at 0 or 20 ng doxycycline as indicated.

(E) Box and whisker plots showing peak score for two replicate (R1 and R2) ChI

motifs. Expression of HA-MITF WT and mutants induced at 0 or 20 ng doxycycli

See also Figure S4.
MITF was expressed at levels similar to endogenous MITF in

the parental cell line (Figure S4B), binding by K243Q and WT

MITFwas similar at all motifs, but the K243Rmutant again bound

less well to all classes of binding site.

Single-Molecule Tracking (SMT) of MITF Binding in Cells
Since the read density of the ChIP-seq experiments using

MITF WT and the two mutants was normalized to the total

mapped reads, the reduced peak heights associated with the

K243R mutant means that there is an increase in reads distrib-

uted elsewhere within the genome that are not within peaks

that pass the statistical threshold in the peak-calling algorithm.

This result was unlikely to be an artifact, as it was highly repro-

ducible across multiple ChIP-seq experiments using different

concentrations of doxycycline (Figures 5 and S4D–S4G) as

well as in the non-inducible stably expressing cell lines

(Figure S4A).

In an orthogonal approach to understanding the paradoxical

discordance between in vitro binding by the K243 mutants and

their binding in vivo, we used SMT to examine the kinetics of

WT and mutant MITF binding to chromatin in live cells. In this

approach (Tokunaga et al., 2008), HALO tagged-transcription

factors are labeled with sub-saturating concentrations of a

bright, photostable fluorescent ligand, JF594 (Grimm et al.,

2015). This allows an estimation of the diffusion properties

of labeled molecules, the fraction of transcription factor

immobilized in the nucleus, and the duration of the binding

events (Gebhardt et al., 2013; Mazza et al., 2012, 2013). To

this end, we generated 501mel cells stably expressing doxycy-

cline-inducible HALO-tagged WT and K243 mutant MITF (Fig-

ure 6A). We also expressed a non-DNA-binding mutant of

MITF (Dbasic) lacking the basic region required for sequence-

specific DNA binding (Fock et al., 2019). Because the basic re-

gion contributes to MITF nuclear localization (Fock et al.,

2019), we fused HALO-tagged WT and mutant MITF to the

SV40 T-antigen nuclear localization signal (Kalderon et al.,

1984). After induction of MITF expression using 20 ng doxycy-

cline, nuclei expressing HALO-MITF were imaged (Figure 6B;

Videos S1, S2, S3, and S4).

We modeled the distribution of single-molecule displace-

ments for WT MITF tracks collected at 100 frames per second

(fps) with a three-component diffusion model (Hansen et al.,

2018; Loffreda et al., 2017; Speil et al., 2011) (Figure 6C) and

determined that 43% of molecules were immobilized, 34%

were found in a slow diffusion state with Dslow = 0:34 mm2=s,

and the remaining molecules were in a fast diffusion state with

Dfast = 1:7 mm2=s (Figure 6D). Transcription factors explore the
iological replicate ChIP-seq experiments of HA-tagged MITF expressed using

d using 0 or 20 ng doxycycline. See also Table S2.

q experiments expressed using 0 or 20 ng doxycycline centered around peak

distance from center of the peak (in bp).

utant MITF ChIP-seq profiles from iMITF cell lines expressing HA-tagged MITF

P-seq experiments for the WT and two K243 mutants related to the indicated

ne. Colored line indicates median, and black line indicates mean.
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Figure 6. Live-Cell Single-Molecule

Tracking (SMT) of HALO-Tagged MITF

(A) HALO-tagged MITF expression vectors. NLS

indicates the nuclear localization sequence. Dba-

sic lacks residues required for DNA binding.

(B) Exemplary frames of SMT movies using WT

and mutant HALO-tagged MITF, collected at 100

fps (see also Videos S1, S2, S3, and S4). Scale bar,

5 mm. Labeling with 100 pM Halotag JF 594 allows

particle densities in the range of a few molecules

per frame.

(C) SMT movies were tracked to generate a dis-

tribution of single-molecule displacements be-

tween consecutive frames that was fit with a three-

component model (one immobile component and

two diffusing components) to provide quantitative

estimates for WT MITF and mutants shown in (D)

and (E). Cmp, component.

(D) Quantitative estimates derived from SMT using

WT andmutant HALO-taggedMITF for the fraction

of molecules in each state. Error bars indicate SD.

(E) Quantitative estimates of the diffusion co-

efficients of free molecules. For MITF WT, Dbasic,

K243Q, and K243R, respectively, Ncells = 20; 6; 15;

15; Ndisplacements = 17802; 2684; 16422; 12999.

Error bars indicate SD.

(F) Summary derived from the SMT analysis of

proportion of MITF calculated to bind high- versus

low-affinity sites.

(G) Electrophoretic mobility shift assay (EMSA)

using bacterially expressed and purified WT and

mutant MITF DNA-binding domains, a 30-bp

TCACGTGA-motif-containing probe, and compe-

tition with 4-fold dilutions of SSD (10 mg to 2.3 fg).

Bound DNA is shown. Probe was in excess in all

reactions.

(H) EMSA as in (G) with competition by indicated

competitor oligonucleotides at 3, 10, and 30 ng.

Bound DNA is shown.

See also Figures S5 and S6 and Videos S1, S2, S3,

and S4.
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nucleus with diffusion coefficients of this order of magnitude,

which is �3- to 10-fold slower than expected for inert tracers

of comparable sizes. Such slowdown in diffusion has been inter-

preted as an effect of molecular crowding in the nucleus (Izeddin

et al., 2014; Mazza et al., 2012) or transient nonspecific interac-

tions with chromatin on a timescale faster than the acquisition

frame rate (Elf et al., 2007; Michelman-Ribeiro et al., 2009), a

phenomenon known as effective diffusion (Sprague et al., 2004).

To interpret the measured immobile fractions and diffusion

coefficients, we repeated the SMT analysis using the MITF-Dba-

sic mutant (Figures 6B–6D). MITF-Dbasic displayed a 4-fold

drop in its immobile fraction, indicating that the WT-MITF-bound

fraction largely arises owing to its interactions with DNA-binding

sites. The duration of these stable MITF-binding events typically

last for several seconds (Figure S5A), as reported for themajority
10 Molecular Cell 79, 1–16, August 6, 2020
of transcription factors studied by SMT

(Chen et al., 2014; Gebhardt et al., 2013;

Loffreda et al., 2017; Sugo et al., 2015;

Teves et al., 2016). The slow and fast
diffusion coefficients of the diffusing populations of MITF-Dbasic

were�2-fold higher than that observed for WTMITF, supporting

the hypothesis that diffusing WT molecules are slowed down by

low-affinity binding events lasting a few milliseconds at most

(Figure 6E).

We next performed SMT on cells expressing the HALO-MITF

K243Q and K243R mutants. While the K243Q mutant displayed

a minor decrease in immobile fraction (<20%) (Figures 6C and

6D), the MITF K243R mutant exhibited a more pronounced

drop in its immobile fraction (2.5-fold) and a corresponding in-

crease in the effective slow and fast diffusing fractions (Figures

6C and 6D). However, surprisingly, SMT did not reveal any sub-

stantial difference in the residence time of MITF WT and K243

mutants (Figures S5A–S5D). Thus, compared to the WT and

K243Q mutant, the K243R mutant exhibits a reduced immobile
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fraction but a similar residence time and diffusion coefficient

(Figure 6E). The SMT data therefore support the ChIP observa-

tions; K243Q behaves dynamically very similarly to WT MITF

(although with a marginally reduced immobile fraction), whereas

the K243R mutant has its binding equilibrium shifted toward

an unbound or transiently bound (effective diffusion) state. In

other words, by binding transiently but frequently to low-affinity

sites genome-wide, the K243R mutant is less able to bind

higher affinity sites associated with gene regulation.

If we assume that the measured immobile fraction by SMT

reflects specific long-lived binding and that the slowdown in

diffusion (compared to MITF-Dbasic) is due to nonspecific tran-

sient binding, we can use the estimates from the SMT data to

calculate the number of high-affinity and low-affinity binding

sites bound at any time. By this calculation, long-lived binding

events occur 1.5 times more frequently than transient binding

events for WT MITF (Figure 6F). This ratio is slightly reduced

for MITF-K243Q (1.1–1.4 times), while it is 3-fold lower for

MITF-K243R (0.4–0.5 times). These data are in very good agree-

ment with the ChIP-seq performed using WT and mutant MITF.

To confirm these data, we also performed an SMT-based

competition assay (Figure S6A). Using a cell line stably express-

ing WT HALO-MITF, we introduced expression vectors for

doxycycline-inducible GFP-tagged WT and K243R and K243Q

mutants and determined the bound and slow- and fast-diffusing

fractions. The results (Figures S6B and S6C) indicate that the

bound fraction of the stably expressed HALO-MITF WT is sub-

stantially reduced when the K243Q mutant is expressed, but

not when the K243R mutant is expressed. The WT exhibits an

intermediate effect, consistent with it being partially acetylated.

As an additional control, we also determined the bound and

slow- and fast-diffusing factors for a stably expressed MITF

mutant bearing a quadruple K > R substitution in the four addi-

tional acetylation sites identified here (K21, K33, K43, and

K248) (Figure S6D). The 4KR mutant exhibited a similar distribu-

tion of displacements (Figure S6E), bound (Figure S6F) and fast

diffusing coefficient (Figure S6G) as the WT MITF. This indicates

that these additional acetylated residues are unlikely to

contribute to MITF DNA-binding activity. This result was

confirmed using ChIP-PCR to compare occupancy of WT MITF

to that of the 4KR mutant on a set of MITF-binding sites. No sig-

nificant differences in occupancy were apparent (Figure S6H).

K243 Status Dictates Titration by Genomic DNA
To characterize the equilibrium between MITF specific and

nonspecific binding in vitro, we performed a DNA-binding elec-

trophoretic mobility shift assay using a radiolabeled probe con-

taining a high-affinity TCACGTGAMITF recognition site together

with bacterially expressed and purified MITF WT and K243 mu-

tants. Binding to the probe was challenged with increasing

amounts of salmon sperm genomic DNA (SSD) as competitor

to reflect the presence of genomic DNA present within nuclei.

The results showed that bacterially expressed WT MITF (non-

acetylated) or K243R mutant were similarly competed by the

SSD from binding the consensus TCACGTGA probe (Figure 6G).

By contrast, �256-fold more SSD was required to similarly

compete the K243Q mutant. All three proteins were competed

well by a cold TCACGTGA consensus competitor, andmutations
inmore than one base of thismotif prevented binding (Figure 6H).

However, the K243R and WT, but not the K243Q, proteins were

also competed by a low-affinity TCACGTTA motif. These result

can be explained by higher affinity binding by the K243R mutant

conferred by the additional phosphate-backbone contact

enabling it to bind the genome-wide excess of weaker binding

sites that diverge from the consensus. Thus the in vitro DNA-

binding assays are in agreement with both the SMT and

ChIP-seq analyses, and collectively, the data confirm the

paradoxical result that a transcription factor with reduced

DNA-binding affinity in vitro (MITF K243Q) can function better

in vivo than a higher affinity binding protein (K243R).

Finally, for at least two transcription factors, p48 (PTF1A;

involved in pancreatic acinar cell differentiation; Rodolosse

et al., 2009) and the neuronal differentiation 1 (NEUROD;BETA-

2) bHLH factor (implicated in pancreatic islet cell development

and function; Qiu et al., 2004), the equivalent lysine is acetylated

and implicated in driving gene expression. We therefore estab-

lished a stable cell line expressing similar levels of HALO-tagged

NEURODWT or K138R or K138Qmutants (K243 equivalent) and

performed SMT analysis. The results revealed that WT NEUROD

exhibited a distribution of displacements that lay between that of

the K138R and K138Q mutants (Figure S6I). As with the MITF

K243R mutant, the bound fraction of the K138R mutant was

reduced compared to the WT and K138Q mutant, with the latter

also exhibiting a reduced fast-diffusing fraction (Figure S6J) and

reduced fast diffusion coefficient (Figure S6K). Collectively,

these data suggest that the modification status of K138 in

NEUROD plays a similar role in dictating the effective available

fraction of the transcription factor as K243 in MITF.

DISCUSSION

Models of transcription regulation suggest that transcription

factors engage in extensive nonfunctional interactions within

chromatin-accessible regions (Fisher et al., 2012) and that bind-

ing to regulatory elements is intrinsically stochastic and highly

dynamic (Liu and Tjian, 2018; McNally et al., 2000). Moreover,

the probability of transcription initiation occurring is largely

determined by the affinity of the binding site for the transcription

factor (Segal and Widom, 2009). It is therefore widely assumed

that decreasing transcription factor DNA-binding affinity reduces

transcription initiation by diminishing occupancy of the

sequence-specific regulatory elements. However, our results,

obtained using MITF as a model, highlight an unexpected

paradox. The acetylation mimetic K243Q mutant exhibits

reduced DNA-binding affinity in vitro but supports melanocyte

development and tumor formation better in vivo than the non-

acetylatable higher affinity K243R mutant. The WT MITF protein

has a similar affinity for DNA as the K243R mutant in vitro, but,

consistent with WT MITF being acetylated in cells, it instead

supports melanocyte development like the lower affinity

K243Q mutant. The biological activity of the WT and mutants is

reflected in their relative ChIP efficiency, withWT and low-affinity

K243Qmutant binding better in cells than the high-affinity K243R

mutant. Moreover, as expected, increasing levels of MITF WT

and mutants led to increased occupancy of binding sites

genome-wide, reflected in both increased peak height and
Molecular Cell 79, 1–16, August 6, 2020 11
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more sites bound, though at physiological or sub-physiological

levels, the difference between the K243R mutant and the

WT/K243Q mutant was maintained. Explaining the paradox

that reduced DNA binding affinity in vitro translates to better

DNA binding and function in vivo provides a novel and unantici-

pated insight into transcription factor dynamics.

Counterintuitively, we propose that the simplest and most

likely explanation for the differential recognition of binding sites

in vivo by the WT/K243Q and K243R proteins is their differential

DNA-binding affinity; a genome-wide excess of very low-affinity

binding sites may be bound by a high-affinity transcription factor

such as the K243Rmutant but may not be recognized effectively

by either the K243Q mutant or an acetylated WT protein. In this

model, an excess of low-affinity sites will reduce the effective

concentration of MITF that is free to recognize the productive

binding sites that support melanocyte development and tumor

formation. This explanation was supported by our observation

that in vitro, in the absence of any co-factors, SSD titrated the

high-affinity unacetylated WT protein and the K243R mutant

better than the low-affinity K243Q mutant, leaving the K243Q

mutant better able to bind a consensus binding site. Such a

model to control transcription factor availability was originally

hypothesized for the bacterial Lac repressor (von Hippel et al.,

1974), and more recently, it was shown that in E. coli, competing

LacR-binding sites on plasmids whose copy numbers vary dur-

ing the cell cycle can have a substantial impact on the dosage

response to that transcription factor (Brewster et al., 2014).

While a large excess of degenerate, low-affinity motifs pre-

sents a thermodynamic challenge to a given transcription factor

locating and remaining at its target regulatory elements, it also

offers an opportunity for regulation. However, for a regulated

genomic titration model to be valid, the number of molecules

of a transcription factor able to bind DNA should not be in large

excess over the number of potential binding sites. In mammalian

cells, transcription factor copy numbers vary widely (Biggin,

2011), but the fact that increasing transcription factor expression

levels cause changes in gene expression and that limiting

numbers of transcription factors can be redirected to alternative

sites by binding partners (Hosokawa et al., 2018) implies that

they are not effectively in excess over their accessible DNA-

binding sites. By contrast, early observations made using

fluorescence recovery after photobleaching (FRAP) suggested

that the great majority of transcription factor molecules in a cell

are fast diffusing and are therefore potentially in excess over

their binding sites (McNally et al., 2000; Sprague et al., 2004;

Stenoien et al., 2001). However, as a population technique,

FRAPmay fail to dissect the behavior of multiple coexisting pop-

ulations (e.g., stably bound, transiently bound to nonspecific

sites, or freely diffusing). Instead, we used SMT to address the

dynamic behavior of MITFWT and the K243mutants. The results

were consistent with the ChIP-seq data as well as the in vitro

DNA binding in the presence of salmon spermDNA. SMTmovies

with a frame rate of 100 fps revealed that 45% of MITF WT was

immobile, a fraction higher than SOX2 (23%) or steroid receptor

(20%–40%), while slower acquisitions determined an average

residence time of 6 s, similar to that of other transcription factors

(Chen et al., 2014; Gebhardt et al., 2013; Loffreda et al., 2017;

Sugo et al., 2015; Teves et al., 2016; Morisaki et al., 2014; van
12 Molecular Cell 79, 1–16, August 6, 2020
Royen et al., 2011). Surprisingly, although the MITF non-DNA-

binding mutant exhibited a large decrease in the immobile frac-

tion, it also displayed an increase in the diffusion coefficients of

the diffusing populations. This indicates that �30% of MITF WT

diffusion is interdispersed with very transient (faster than the

acquisition rate) binding events to low-affinity sites that reflect

the proposed genomic reservoir, resulting in slower effective

diffusion coefficients. The other two MITF populations deter-

mined from the biexponential fitting of the distribution of resi-

dence times, accounting for 45%of themolecules, are represen-

tative of more stable (higher affinity) binding events. Importantly,

the high-affinity K243R mutant exhibited a significantly reduced

immobile fraction and an increase in both the fast- and slow-

diffusing fractions compared to the WT or K243Q mutant. This

reflects, in this orthogonal approach, the reduced DNA binding

by MITF K243R observed using ChIP-seq, and the data are

consistent with a greater proportion of the high-affinity K243R

mutant binding transiently to very low-affinity sequences

genome-wide, thereby reducing the pool of molecules able to

target sites bound better by the WT or K243Q mutant. Since

the bound fraction determines transcription burst frequency

(Stavreva et al., 2019), our results are consistent with the

K243Q or acetylated WT MITF, but not the K243R mutant, sup-

porting melanocyte development and promoting tumor growth.

Notably, in development, as shown by the ChIP-seq and SMT

assays, the MITF WT protein behaves much more like the

K243Q mutant than the K243R mutant, suggesting that under

the conditions used, a significant proportion of functional MITF

is acetylated. However, it is important to note that additional

post-translational modifications, including acetylation on other

residues not identified here, by p300/CBP or possibly other

acetyl transferases, or non-acetylationmodifications such as su-

moylation, phosphorylation, or methylation might also affect

MITF target specificity.

The increased binding observed after induction of MITF

expression using doxycycline is consistent with the rheostat

model for MITF function (Carreira et al., 2006) that suggests

that increasing MITF activity changes its corresponding gene

expression program. However, MITF ‘‘activity’’ is defined as a

combination of the amount of protein in a cell and post-transla-

tional modifications that affect function. Since we found no evi-

dence that mutation of K243 affects MITF protein levels, K243

acetylation status must control the effective concentration of

MITF by regulating its availability within cells. The K243-Ac/

K243Q is unable to bind the genome-wide excess of very low-af-

finity sites and consequently has a higher effective concentra-

tion; by contrast, unmodified K243 or the K243R mutant has a

lower effective concentration and less availability to bind key

regulatory elements, as it instead binds an excess of low-affinity

sites genome-wide. Since we show that CATGTG M-box motifs

associated with differentiation genes exhibit lower affinity

for MITF than CACGTG elements, we anticipate that transcrip-

tionally productive recognition of lower affinity sites may

require higher effective levels of MITF that may be achieved by

a combination of K243 acetylation as well as increased protein

levels, for example in response to MC1R signaling following

UV irradiation (Cui et al., 2007; Price et al., 1998; Malcov-Brog

et al., 2018).
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For the bHLH or bHLH-LZ family, acetylation by p300/CBP, or

potentially other lysine acetyl-transferases, such as p300/CBP-

associated factor (PCAF) (Rodolosse et al., 2009) or GCN5

(Wang et al., 2020), may regulate their DNA-binding affinity. In

this respect, regulation of transcription factor acetylation may

be generally important. Significantly, lysine 243 in MITF is highly

conserved in most bHLH and bHLH-LZ transcription factors and

makes a similar phosphate backbone contact in available crystal

structures. Importantly, acetylation of the bHLH factor NEUROD

at K138 (the K243-equivalent residue) enhances its capacity to

regulate transcription (Qiu et al., 2004), and a K138Qmutation in-

creases the bound fractionmeasured by SMT.We therefore view

it as likely that acetylation-regulated genomic redistribution

achieved by moderately reducing a transcription factor’s affinity

for DNA may be a widespread mechanism for determining tran-

scription factor availability. Moreover, since p300 activity can be

regulated by MAPK signaling (Chen et al., 2007), the greatly

enhanced tumor-forming capacity observed with the MITF

K243Q mutant compared to K243R further suggests that tran-

scription factor acetylation driven by activated oncogenes like

BRAF will fuel proliferation in cancer in part by releasing tran-

scription factors from their genomic reservoir.

In summary, by regulating a transcription factor’s affinity for

DNA, the balance between the pool of molecules binding the

genomic reservoir and those recognizing productive binding

sites may be controlled. Our results suggest that competition

by an excess of low-affinity sites means paradoxically that

moderately reducing DNA-binding affinity may be crucial for

raising transcription factor availability above the threshold

required for productive gene regulation underpinning develop-

ment and tumorigenesis.
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Fluorescence anisotropy probes (backbone)
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METABION This paper
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Eurofins This paper
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IDT This paper
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IDT This paper

GAPDH_ChIP-qPCR non MITF target –ve controlF
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IDT This paper
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IDT This paper
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IDT This paper
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IDT This paper

MTHFR_ChIP-qPCRF 50-CCTGGTCTCA
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SIRT1_ChIP-qPCRF 50-CTCGCCACAAA
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Recombinant DNA

Piggybac expression system (Magnúsdóttir et al., 2013) (Magnúsdóttir et al., 2013)
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pPB-NLS-HTN-Mitf-K243R In house This paper

pPB-NLS-HTN-Mitf-Dbasic In house This paper

pPB-NLS-HTN-Mitf-K21/33/43/248R In house This paper

pPB-3xHA-Mitf-K21/33/43/248R In house This paper

pHTN-3xHA-Mitf In house This paper

pPB-EmGFP-3xHA-MITF-WT In house This paper

pPB-EmGFP-3xHA-MITF-K243Q In house This paper

pPB-EmGFP-3xHA-MITF-K243R In house This paper

pEZ-HTN-NEUROD1 GeneCopoeia #EX-M0522-M49

pEZ-HTN-NEUROD1-K138Q In house This paper

pEZ-HTN-NEUROD1-K138R In house This paper

Software and Algorithms

STAR v 2.5.1b, Genome GRCh38 v23 (Dobin et al., 2013) N/A

Homer v4.9.1, Genome hg38 v5.10 (Heinz et al., 2010) N/A

ggplot2-v3.0.0 – under R-v3.5.1 https://cran.r-project.org/web/

packages/ggplot2/index.html

TreeView (Saldanha, 2004) N/A

Bowtie 1.1.2 (Langmead and Salzberg, 2012) N/A

PicardTools version 1.96, http://picard.sourceforge.net

seqMINER (Ye et al., 2011) N/A

deepTools (Ramı́rez et al., 2014) N/A

MACS2 v2.1.0 (Zhang et al., 2008) N/A

CisGenome (Ji et al., 2008) N/A

MEME (Machanick and Bailey, 2011) N/A

BedTools (Quinlan and Hall, 2010) N/A

BWAv0.7.8 N/A https://academic.oup.com/bioinformatics/

article/25/14/1754/225615

Bioconductor N/A https://www.bioconductor.org
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Colin R

Goding (colin.goding@ludwig.ox.ac.uk).

Materials Availability Statement
Plasmids and cell lines generated in this study are available upon request. The K243Ac-specific antibody is of limited-availability,

although we can provide information on supplier which may be used to procure additional material.

Data and Code Availability
The accession number for the ChIP-Seq datasets using constitutive or inducible HA-MITF reported in this paper are Gene Expression

Omnibus: GSE77437, GSE137522. All bioinformatics analyses were carried out using publically available packages as described in

METHOD DETAILS section. Original data have been depositied to Mendeley Data: https://doi.org/10.17632/2ccckzsk26.1.

Exemplary SMT movies are provided in Videos S1, S2, S3, and S4. Additional movie files are available on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In vivo animal studies
Zebrafish

Ethical statement. All zebrafish experiments are performed in accordance with the Animals (Scientific Procedures) Act 1986,

and approved by the University of Edinburgh Animal Welfare and Ethical Review Body.

Experimental procedures

Plasmid DNA (62.5 ng/ml) comprising the zebrafishmitfa promoter driving the fishMITF cDNAwasmixedwith Tol2mRNA (70 ng/ml). 2

nL of the mixture was injected into 1-cell stage mitf null nacre embryos. Injected embryos were grown at 28�C for 5 days. On day 5,

embryos were briefly exposed to white light to contract melanocytes and were then imaged before being fixed in 4% PFA. The

total number of surface melanocytes in the head, trunk and yolksac was counted.

Experimental animals

Zebrafish AB/TPL lines were bred, raised and maintained as described (Westerfield, 2000).

Mouse

Ethical statement. Experiments were approved by the animal use ethical committee of Oxford University and fully complied with

UK Home Office guidelines.

Experimental procedures

1 3 106 cells in 100 ml PBS were subcutaneously injected into the flanks of 7-9 week old female athymic nude mice at day 1.

Tumor size was measured every three days with Vernier callipers. Tumor volumes were calculated using the following formula:

(L * W * W)/2, in which L represents the large diameter of the tumor, and W represents the small diameter. Animals were

sacrificed and the tumors isolated when a tumor reached approximately 1 cm diameter, or before.

Experimental animals

Healthy female athymic nude mice (Crl:NU(NCr)-Foxn1nu) aged 7-9 weeks were purchased from Charles River.

Experimental Models
Cell Lines

Human cell line information.

501mel Human melanoma cell line (female, RRID:CVCL_4633)

A375M Human melanoma cell line (male, RRID:CVCL_B222)

Phoenix-Ampho Human fetal cell line (female, RRID:CVCL_H716)

All melanoma cell lines were authenticated by STR analysis using Eurofins Genomic service. All parental and derivative cell

lines were verified mycoplasma free using Ludwig Cancer Research monthly mycoplasma check service.

Culture/Growth condition

Melanoma cell lines and their stable transfectants were grown in RPMI-1640 (GIBCO BRL, Invitrogen), supplemented with 10% fetal

bovine serum (FBS, Biosera). Phoenix-ampho cells were grown in DMEM (Lonza), supplemented with 10% FBS. Cells were main-

tained in humidified incubator at 37�C with 10% CO2.

Bacterial Strains
Escherichia coli BL21(DE3) cells, Genotype: B F– dcm ompT hsdS(rB

– mB
–) gal l(DE3) (Agilent Technologies #200131).

Escherichia coliDH5a bacteria Genotype: F-F80lacZDM15D(lacZYA-argF) U169 recA1 endA1 hsdR17(rk
-, mk

+) phoA supE44 thi-1

gyrA96 relA1 l- (Invitrogen #18265017)
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METHOD DETAILS

Plasmids
pCS2-6x Myc-MITF has been described previously (Schepsky et al., 2006). pCMV14-3 3 FLAG-MITF was made by insertion of the

MITF mouse cDNA from the ATG start codon, but lacking a stop codon into the vector polylinker and expresses MITF with a C-ter-

minal triple flag epitope. pcDNA3-3 3 HA-MITF was constructed by inserting the MITF cDNA from the ATG start codon to the stop

codon, and pETM-11-MITFDN180DC296 has been described (Pogenberg et al., 2012). The doxycycline-inducible 3xHA-Mitf

plasmid was made through PCR-mediated sub-cloning of pCDNA5-3xHA-Mitf into pPB-hCMV*1-cHA-pA (Magnúsdóttir et al.,

2013) using EcoRI-HF (NEB; Cat#R3101L). pHTN-Mitf was sub-cloned from pCDNA5-3xHA-Mitf using EcoRI-HF. The doxycy-

cline-inducible Halo-tag-Mitf plasmids were generated through sub-cloning of pHTN-Mitf into pPB-hCMV*1-cHA-pA using NotI-

HF (NEB; Cat#R3189S). The NLS derived from SV40 and 10xHIS-tag were introduced into pPB-HTN-Mitf and pPB-MITF,

respectively through PCRmediated insertion and point mutations were introduced using QuikChange Lightning Site-Directed Muta-

genesis Kit (Agilent; Cat# 210519). The basic domain of Mitf was removed through PCR-mediated deletion to generate the pNLS-

HTN-Mitf-Dbasic construct. pPB-EmGFP-3xHA-MITF was generated through PCR mediated subcloning of EmGFP from

pcDNA6.2-N-EmGFP-GW into pPB. pEF-Myc-BRAFV600E was a gift from Richard Marais, pcDNA3-3 3 HA-p300 was a gift from

Bernhard Luescher. All plasmids were sequenced prior to use.

Stable cell line generation
501mel cells stably expressing HA-epitope tagged WT MITF have been described (Strub et al., 2011). 501mel melanoma cell

lines ectopically expressing inducible Mitf were generated by co-transfecting pPB-3xHA-Mitf with pPB-rttA and pPB-transposase

in an 8:1:1 ratio using Fugene 6 (Promega; Cat# E2692) at a 3:1 FuGENE 6:DNA ratio. Cells were initially selected for pPB-rttA using

1mg/ml Geneticin (GIBCO; Cat# 10131027) then for pPB-3xHA-Mitf with 5 mg/ml Puromycin (GIBCO; Cat# A1113802). The resulting

cell lines were genotype for integration of the corrected mutant through sequencing of amplicon PCR-amplified from genomic

DNA extracted using PureLink Genomic DNA Mini Kit (Invitrogen; Cat# K182002). Clonal populations were selected, dissociated

and expanded before being analyzed for appropriate HA-MITF expression. 501mel cells stably expressing Halo-tag Mitf and

NEUROD1 were generated through transient transfection of plasmids using Fugene 6 at a 3:1 FuGENE 6:DNA ratio for 3 rounds

as the cells were successively passage from 6 cm to 10 cm dish and to T75 flask before selection in 1mg/ml Geneticin till stably

ectopically expressing cell lines were obtained.

Western blotting
Hot LDS Sample Buffer (Invitrogen; Cat# NP0008) supplemented with b-mecaptoethanol (Sigma; Cat# M6250) was used to lyse

cells before being subjected to SDS-PAGE using either a 19:1 ratio of acrylamide:bis-acrylamide, or a 200:1 ratio, as in Figure 2A,

to allow better resolution of phosphorylated proteins. Note that the 200:1 ratio leads to proteins exhibiting an apparent increase in

molecular weight if they are modified. Proteins transferred to Immobilon-FL polyvinylidene difluoride membranes (Millipore; Cat#

IPFL00010) that were blocked with 5% non-fat milk, in TBS containing 0.1% Tween-20 (TBS-T) before probing with primary

antibodies in 5% BSA-TBS-T overnight at 4�C. Proteins were detected using HRP-conjugated secondary antibodies (Bio-Rad,)

and detected using an enhanced chemiluminescence (GE Healthcare) using X-ray film (Fuji) or Alexa Fluor-conjugated secondary

antibodies and visualized using ChemiDoc MP (Biorad).

Immunofluorescence
Cultured cells were grown to 80% confluence and fixed in 4% PBS-paraformaldehyde for 10 minutes, and incubated in 0.2%

Triton X-100 for 10 minutes followed by 5% BSA in PBS-T for 30 minutes. Samples were stained with primary antibody overnight.

After 3 washes of PBS-T, secondary antibody staining was performed for 1 h and samples mounted in Vectashield mounting

medium containing DAPI (Vector Laboratories).

Immunoprecipitation
Cell pellets were washed in ice-cold PBS and suspended in lysis buffer (50 mM Tris [pH 8.0], 150 mM NaCl, 1 mM EDTA, 1% Triton

X-100, supplemented with 1 3 protease inhibitor and 1 3 phosphatase inhibitor cocktails [both Roche], 10 mM sodium butyrate,

10 mM nicotinamide) for 10 min on ice and clarified by centrifugation at 13,000 rpm, 10 min. After retaining an input fraction, samples

were incubatedovernight with rotationwith 1 mg antibody. 50ml of a 50%proteinG-agarose bead slurry (Roche), previously equilibrated

in lysis buffer, was added and the samples rotated for a further 2 hours. After extensive washing in lysis buffer, beads were boiled in hot

23 SDS-PAGE loading buffer. For FLAG IPs, 20 mL of a 50% slurry of anti-FLAG (M2)-conjugated protein G-agarose beads, previously

equilibrated in lysis buffer, was directly added to the clarified lysate overnight before washing and boiling.

GFP- and HIS-tag pull down
GFP-tagged MITF were purified using GFP-trap (Chromotek Cat#gtma-100) from transiently transfected Phoenix-ampho with

indicated plasmids (total 6 mg DNA in 6 cm dish) using Fugene 6. The cells were lysed in 500 mL RIPA supplemented with 5 mM

M344 (Stratech Scientific Cat#S2779-SEL) and 4xPIC (Sigma Cat#5892988001) on ice 30 mins before passing through 25 guage
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needle for mechanical disruption till no visible clump is seen follow by pre-clearing at 14,000 x g centrifugation for 10 mins.

Supernatant was used for GFP pull-down overnight, wash 3 times and eluted in LDS.

HIS-tag MITF were purified using Ni-NTA His$Bind� Superflow Resin (Merck Cat#70691) from 501mel cells stably expressing

ectopic MITF-10xHIS. Cells pelleted from 15 cm dish were lysed in 1mL lysis buffer (6M guanidinium HCl, 0.1 MNa2HPO4/NaH2PO4,

10mM Tris-HCl (pH8), 0.005M imidazole, 0.01M b�ME) and briefly sonicated before pre-clearing through centrifugation, 14,000 x g,

10 mins. Supernatant is transferred to 15ml LoBind tube with extra 4 mL lysis buffer. 100 mL of washed and pre-equilibrated Ni-NTA

resin in lysis buffer was added to the supernatant and rotated overnight, 4�C before washing 1x in lysis buffer, 1x wash buffer (8 M

Urea, 0.1 M Na2HPO4/NaH2PO4, 10 mM Tris-HCl (pH8), 0.005 M imidazole, 0.01 M b�ME), 2x wash buffer + 0.1% Triton X-100

with 5 min on rotating wheel at room temperature between each wash and eluted in LDS.

Mass spectrometry and sample preparation
Cells were transfected with a mammalian Myc-epitope-tagged murine MITF expression vector together with expression vectors

for p300. 48 h post-transfection cells were harvested, and whole cell lysate used for immunoprecipitation using anti-Myc antibody.

Immunoprecipitates were resolved using SDS-PAGE and gel bands corresponding to MITF were excised, destained then reduced

and alkylated and digested with chymotrypsin overnight. Digests were analyzed using a LTQ XL Orbitrap (Thermo, Hemel Hemp-

stead), coupled to aDionex Ultimate 3000 nanoHPLC system (Camberley, Surrey). Datawere analyzed usingMascot (Matrixscience,

London). Precursor mass tolerance was set to 10 ppm, fragment mass tolerance was 0.5 Da, fixed modification was carbamidome-

thylation of cysteine and variable modification was oxidised methionine and acetylated lysine. Data were searched against an IPI

mouse database.

Recombinant protein purification
MITF DNA-binding domains (residues 180-296) that were either WT, K243Q or K243R were expressed in Escherichia coli BL21(DE3)

cells (Agilent Technologies). Cultures were grown in Luria-Bertani broth to an OD600 of 0.7-0.8. Recombinant protein overexpression

was induced by addition of isopropyl b-D-1-thiogalactopyranoside (IPTG; 0.5 mM final concentration) and the cultures were incu-

bated for a further 6 h. Cells were harvested by centrifugation, washed in PBS and frozen on dry ice. After thawing, cells were

suspended in lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 10% v/v glycerol, pH 7.4 [NaOH], 20 mg/ml lysozyme

[Invitrogen], 1 3 protease inhibitor cocktail [Roche]). Cells were lysed by sonication and centrifuged. Clarified lysate was mixed by

rotation with a 50% Ni-NTA slurry (QIAGEN) previously equilibrated in lysis buffer and loaded in gravity flow columns (Bio-Rad).

After extensive washing in wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, 10% v/v glycerol, pH 7.4 [NaOH]), bound

material was serially eluted in elution buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, 10% v/v glycerol, pH 7.4 [NaOH]).

Fractions were analyzed by SDS-PAGE and Coomassie staining to determine purity, and pure fractions were pooled and glycerol

added to a final concentration of 30% v/v.

Circular dichroism (CD) spectropolarimetry measurements
Prior to eachmeasurement, samples were dialyzed against 10mMpotassium phosphate pH 7.5, 150mMNaF and diluted to 0.25mg

xml-1. Spectra were recorded at 10�Con aChirascan CDSpectrometer (Applied Photophysics), between 185 and 260 nm in a 0.1 cm

cuvette. Machine settings were as follows: 1 nm bandwidth, 0.5 s response, and 1 nm data pitch. Spectra were background

subtracted and converted to mean residue ellipticity.

Fluorescence anisotropy assay
The following fluorescein-labeled oligonucleotides were synthesized at METABION (Planegg/Steinkirchen, Germany):

Consensus: 50- GAGATCACGTGATGAC-30-Fluorescein
E-box: 50- GAGACCACGTGTTGAC-30-Fluorescein
M-box: 50- GAGATCATGTGTTGA C �30-Fluorescein
HS: 50- GAGATCACGACTTGAC �30-Fluorescein

These oligonucleotides were annealed with complementary unlabeled oligonucleotides through incubation at 95�C for 5 min,

followed by a passive cooling step to room temperature. Increasing concentrations of MITF proteins were incubated with the

respective dsDNA oligonucleotides at a final concentration of 1.33 nM at 25�C for 5 minutes in 10 mM Tris/HCl pH 7.5, 300 mM

NaCl, 0.01% TRITON-X100, and 0.1 mg/mL BSA. Fluorescence anisotropy was then measured using an Infinite M1000 plate

reader (TECAN) using the excitation diode at 470 nm and detecting the emitted light at 530 nm.

Electrophoretic mobility shift assays
EMSAs were performed by incubating equal amounts of recombinant proteins diluted in bandshift buffer (25 mM HEPES [pH 7.4],

150 mMKCl, 10% v/v glycerol, 200 mg/ml BSA, 5 mMDTT) for 20 min in the presence or absence of cold competitor oligonucleotides

or sonicated salmon sperm DNA (Agilent), prior to addition of 32P-labeled oligonucleotide (labeled at both ends with a32-P-dCTP,

Perkin Elmer) and loading on 6% native acrylamide gels. Gels were dried and visualized by autoradiography. The oligonucleotide
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sequences usedwere: TCACGTGA probe (50-CTAGACTTGTGGAGATCACGTGATGACTTCCTGATTCCT, used for radiolabelling and

as cold competitor), and cold competitors: contained the same backbone, but varied in specific bases within the core TCACGTGA

motif indicated in the figure. The sequences given plus reverse complement oligonucleotide sequences were from Integrated DNA

Technologies, and were annealed before use.

Subcellular-fractionation
Cell pellets were re-suspended in 5 pellet volumes of ice-cold nuclear-isolation buffer (10 mM HEPES (pH 7.9), 10 mM KCl, 1.5 mM

MgCl2, 0.5 mMDTT, 10mM sodium butyrate, 43 PIC) and rotated at 4�C for 10min before NP�40 was added to a final concentration

of 0.5% and incubated for a further 5 min. Plasma membrane breakdown was confirmed under the light microscope before

centrifugation at 5,000 3 g for 10 min. The resulting supernatant constituted the cytosolic fraction while the pellet was further resus-

pended in 3x pellet volumes of nuclear extraction buffer (20 mM HEPES (pH 7.9), 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 25%

glycerol, 0.5 mM DTT, 10 mM sodium butyrate, 43 PIC), 4�C, 10 min then centrifuge at 13,000 3 g for 10 min. The supernatant cor-

responded to the nucleoplasmic fraction. The insoluble pelletwas further resuspended in 3 x pellet volumeof nuclear extraction buffer +

10 ml Lysonase (Millipore; Cat# 71230) and incubated 20 min room-temperature followed by centrifuge at 13,000 3 g,10 min. All four

fractions were reconstituted to the same final volume in LDS buffer such that each ml corresponded to the same fraction of cells.

Alternatively, cells were pelleted from a 10 cm dish is resuspended in 500 ml resuspension buffer (20 mMPipes pH 6.8, 1mMEGTA

pH 6.8, 1 mM MgCl2, 1 x PIC) and incubated on ice 5 min before Triton X-100 was added to a final concentration of 0.5%. Plasma

membrane breakdown was confirmed under the light microscope before centrifugation at 900 3 g for 5 min, 4�C. The supernatant

corresponds to the cytosolic fraction (Fraction 1). The nuclear pellet was resuspended in 500 ml nuclear extraction lysis buffer

(100 mM KCl, 300 mM Sucrose, 10 mM Pipes pH 6.8, 3 mM MgCl2, 1 mM EGTA, 1 x PIC and 100 mg/ml DNase) and incubated at

30�C for 45 min with gentle agitation before centrifugation at 1500 3 g for 5 min at 4�C. The supernatant corresponds to Fraction

2. The pellet was further resuspended in 375 ml nuclear extraction lysis buffer + ammonium sulfate to a final concentration of

0.25 M and incubated for 10 min at RT with gentle agitation before centrifugation at 1500 3 g for 5 min at RT. The supernatant

corresponds to Fraction 3. The pellet was then resuspended in 300 ml ice-cold nuclear extraction lysis buffer plus NaCl to a final

concentration of 2Mand incubated on ice for 10min before centrifugation at 4,0003 g for 5min at 4�C. The supernatant corresponds
to Fraction 4 while the pellet corresponds to insoluble nuclear matrix protein, Fraction 5.

ChIP-seq
Cells from three 80% confluent 15 cm dishes were trypsinised, collected into a 50 ml falcon tube ðCorning; Cat# 430828Þ,
centrifuged ð800 3 g; 4 minÞ and media aspirated. Cross-linking was done by adding 45 ml ice-cold PBS contai-

ning 0:4% paraformaldehyde. Cells were rotated 10 min at RT before quenching with glycine to a final concentration

of 0:2 M for 10 min. Samples were then washed and centrifuged ð1500 3 g; 10 minÞ. A total of thirty 15 cm dishes were used for

each replicate of ChIP-seq. Lysis was done in 1 ml ChIP lysis buffer (50 mM Tris-HCl (pH 8:0), 10 mM EDTA, 10 mM sodium butyr-

ate, 1% SDS, 43PIC (Roche; Cat#05056489001)) by passing the cell suspension through a 25 guage needle until there were no

visible clumps before sonicated for approximately 12 min in a Covaris S220 (Peak incident = 145W, Duty Factor = 8%, Cycle/Burst =

200) until 200� 400 bp fragments were obtained (assessed by Bioanalyzer using Agilent High Sensitivity DNA Kit (Agilent; Cat#

5067-4626). The sonicated chromatin was cleared by centrifugation at 13;000 3 g for 10 min and the supernatant diluted 8-fold

in ChIP dilution buffer (16:7 mM Tris (pH 8:0), 167 mM NaCl, 1:2 mM EDTA, 1% Triton X�100, 0:01% SDS) before 120 mg of

anti-HA antibody (Roche; Cat# 11666606001) was added and chromatin rotated in a 50 ml falcon tube overnight. In parallel 550 ml

Dynabeads G were washed, resuspended in ChIP dilution buffer, and blocked in 0:5 mg=ml BSA overnight. Immunoprecipitation

was carried out using blocked-Dynabeads, rotated for 1 hr, 4�C. The beads were washed three times each in low salt wash buffer

(20 mM Tris-HCl (pH 8:0), 150 mM NaCl, 2 mM EDTA, 1% Triton X�100, 0:1% SDS), high salt wash buffer (20 mM Tris-HCl

(pH 8:0), 500 mM NaCl, 2 mM EDTA, 1% Triton X�100, 0:1% SDS) and LiCl wash buffer (10 mM Tris-HCl (pH 8:0), 250 mM LiCl,

1 mM EDTA, 1%sodium deoxycholate, 1%NP�40Þ with beads transferred to a new DNA LoBind tube (Eppendorf; Cat# Z666548)

with each wash. The beads were eluted in 0:2 ml elution buffer (100 mM NaHCO3, 1% SDS). Reverse cross-linking of ChIPed-DNA

was done at 55�C overnight with addition of 0:3 M NaCl (final concentration), 20 mg RNase A (Invitrogen; Cat# 12091021) and

20 mg Proteinase K (Roche; Cat# 3115828001). Recovery of ChIPed-DNA was done using QIAquick PCR Purification Kit (QIAGEN;

Cat# 28106). The concentration of ChIPped-DNA was assessed using Qubit dsDNA HS Assay Kit (Invitrogen; Cat# Q32851).

Alternately, cells were lysed in ChIP lysis buffer and chromatin sheared to around 300 bp for 16minutes in a Covaris S220 at 140W

Peak Incident Power, 5% Duty Cycle and 200 Cycles per Burst. 70 mg chromatin was diluted 9 times in ChIP dilution buffer and pre-

cleared for 2 hours at 4�Cwith 50 mL of 50%protein-G Sepharose slurry (Roche), previously blocked with 0.5mg/ml BSA and 0.5mg/

ml sonicated salmon sperm DNA. The supernatant was incubated overnight with 5 mg of anti-HA antibody (clone 12CA5, Roche)

before 50 mL pre-blocked protein-G Sepharose slurry was added for 1 hour. Beads were washed two times each in low salt buffer,

high salt buffer, LiCl buffer and TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). Chromatin was eluted in elution buffer, cross-links

were reversed overnight at 65�C with 0.3 M NaCl and 10 mg RNase A followed by addition of 4 mM Tris-HCl (pH 8.0), 10 mM EDTA

(pH 8.0) and 20 mg Proteinase K (Fermentas) for 1 hour at 42�C, and DNA purified with phenol-chloroform before ethanol precipitation

with 1 mg glycogen [Roche]. Samples which showed enrichment at expected targets on qPCR (as described in Louphrasitthiphol

et al., 2019) were subjected to sequencing using a HiSeq 4000 ðIlluminaÞ at the Wellcome Trust genomic service.
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Bioinformatic analysis

All fastq files were quality checked with FastQC. Reads from steady state experiments were aligned to human genome build hg19

(GRCh37v75) using Bowtie 1.1.2 (Langmead and Salzberg, 2012), allowing for 1 mismatch. Duplicate reads were discarded using Pic-

ardTools version 1.96, http://picard.sourceforge.net. Library-count normalized read density was examined at specific loci using the

University of Santa Cruz (UCSC) Genome Browser. Read density clustering of normalized libraries was performed with seqMINER

(Ye et al., 2011) and heatmaps drawn with deepTools (Ramı́rez et al., 2014); the regions within each cluster were further sorted by

maximal WT MITF read density. Average read density profiles were generated with BedTools. Peaks were identified using MACS2

v2.1.0 (Zhang et al., 2008) and associated with a gene if they fell within 20 kb of the gene body of a RefSeq gene using CisGenome

(Ji et al., 2008).De novo consensus motifs were predicted with MEME (Machanick and Bailey, 2011) by interrogating the 60 bp around

the summits of peaks. The coordinates of all CATGTG and CACGTGmotifs were determined genome-wide and overlapped with peak

coordinates using BedTools (Quinlan andHall, 2010).Melanoma patient H3K27acChIP-Seq fromGEO series GSE6066 (Verfaillie et al.,

2015) and bigwig files analyzed as above.MelanocyteMITF ChIP-Seq fromGSE50681 (Webster et al., 2014) was processed as above.

All additional steps were performed in R (Sato et al., 1997).

To exclude bioinformatics pipeline-specific artifacts, inducible MITF ChIP-Seq samples were processed in two independent

ways with similar results obtained with both methods. First: alignment to human genome build hg38 (GRCh38v23) with STARv

2.5.1b (Dobin et al., 2013); downstream analysis including peak calling and annotation, gene ontology analysis, bedgraph generation

and de novo motif identification using the exact peak coordinates conducted with Homer (Heinz et al., 2010); histograms of read

density were visualized using TreeView (Saldanha, 2004). Second: reads were aligned to human genome build hg19 (GRCh37v75)

with BWAv0.7.8 and duplicate reads marked with PicardTools; peaks were called with MACS2 using a minimum FDR of 0.001

and annotated with Homer; input-corrected bigwig files were generated with deepTools motif analysis was carried out with Bed-

Tools; consensus motifs were identified with MEME using a 60 bp sequence centered on the peak summit.

Single molecule tracking
Cells stably expressing HaloTag-MITF (WT ormutant) under the control of a doxycycline inducible promoter were plated in 4-well Nunc

Labtek Chambers (Thermo-Fisher, Milan, Italy). 24 h after induction with 20 ng/ml of doxycycline, HaloTag-MITFwas labeled by adding

100 pM of the cell-permeable HaloTag ligand Janelia Fluor� 549 (Janelia Farm, Ashburn, VA, USA) to each of the wells. The cells were

incubated with the dye for 30’ and then extensively washed with PBS (3 washes), followed by an incubation step (20’ at 37�C in cell

culture medium) and one last wash with PBS, and one with cell culture medium. The acquisition of single molecule movies were per-

formed on a previously described custom-madeHiLomicroscope (Loffreda et al., 2017), equippedwith a temperature andCO2Control

(set to 37�C and 5% respectively). For the estimation of diffusion coefficients and bound-fractions, we used a laser exposure of 2 ms

and an acquisition frame rate 100 fps and collected 1000 frames/movie. Fluorescencewas excitedwith a 561 nmsolid-state laser (IFlex

Mustang, QiOptiq) and with a laser power density of approximately 1.2 kW/cm2. Movies were tracked and analyzed using our previ-

ously described software developed inMATLAB (Loffreda et al., 2017;Mazza et al., 2013). Briefly, the resulting tracks are used to popu-

late the histogram of the distribution of displacements (with a bin size Dr = 20nm), that is then fit with a three-component diffusion

model, that gives the probability of observing a displacement in the interval ½r�ðDr =2Þ; r + ðDr =2Þ�

pðrÞ = rDr
X3

i = 1

Fi

2DiDt
exp

�
� r2

4DiDt

�

Where Dt is the interval between two acquisitions (10 ms) and Fi is the fraction of molecules with diffusion coefficient equal to Di. To

provide standard deviations on the fitting parameters a jackknife procedure was adopted as described in Elf et al. (2007) and Loffreda

et al. (2017). Briefly, we performed multiple fitting iterations, each of them after dropping 20% of the data for each of the dataset.

Errors are provided as standard deviations of the obtained distribution of parameters following 200 individual fitting iterations.

The diffusion coefficient of the slowest diffusing component D1 = 0:07ðmm2 =sÞ, compatible with the diffusion coefficients of chro-

matin bound proteins (Chen et al., 2014), and F1 therefore represent the fraction of molecules detected as immobilized to chromatin

(as further validated by analyzing the MITF-Dbasic mutant). The MITF-Dbasic mutant also result in the increase of the diffusion co-

efficients of the unbound population, D2 and D3. In previous work this kind of observation has been interpreted as the presence of

transient binding (at a time-scale faster than the acquisition rate) slowing down diffusion of the WT protein, named effective diffusion

(Elf et al., 2007; Sprague et al., 2004). In our case, the free populations of theWTMITF and K243mutants are all similarly slowed down

compared to MITF-Dbasic (Figure 6E), indicating that transient non-specific binding affects all these three forms of MITF. We can

calculate the number of detectable long-lived binding events (longer than Dt) occurring in a cell at any given time ðNsÞ, by knowing

the number of MITF molecules NMITF , as: Ns =NMITF$F1. Here for NMITF we have used MITF 250,000 dimers estimated by comparing

the level of MITF detected in a western blot from 501mel cells compared to that detected using the same anti-MITF antibody of a

dilution series of a known concentration of bacterially expressed and purified MITF. Similarly, in the case of effective diffusion the

number of transient binding events Nns can be estimated by comparing the diffusion coefficients of the free populations of WT

MITF and K243 mutants to the diffusion coefficients of the MITF-Dbasic mutant, as Elf et al. (2007) and Sprague et al. (2004):
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Nns = NMitf ð1�F1Þ1� Dfree;MITF

Dfree; Dbasic

Where, Dfree; MITF refers to the diffusion coefficients of the free population of the one of MITF proteins (WT or K243 mutants)

and Dfree;Dbasic refers to the diffusion coefficients of the free population of the MITF-Dbasic mutant. As two diffusion coefficients

(D2andD3) are estimated for the free populations of each of the protein we provideNns as a range, where the two limits of the interval

are calculated using ðD2;MITF =D2; DbasicÞ and ðD1; MITF =D1;DbasicÞ respectively. The residence time of this transient binding

events cannot be measured, as it is faster than the acquisition frame rate.

For the measurement of MITF residence times at more stable binding sites (those resulting in the immobile fraction described

above), we scaled down the laser power by a factor 20, and collected movies using long exposures (200 ms exposures,

frame rate 2 Hz), in order selectively image immobilized molecules due to motion blur of diffusing MITF (Chen et al., 2014). The

complement cumulative distribution of the duration of binding events 1� CDFðtÞ were fitted a two-component exponential decay

(Chen et al., 2014; Loffreda et al., 2017):

1�CDFðtÞ= f1 exp

�
� t

t1

�
+ ð1� f1Þexp

�
� t

t2

�

To extract the characteristic intermediate-lived t1 and long-lived t2 binding times to sites and the fraction of binding events f1 and

1� f1 occurring at these sites. The average residence time is then calculated as:

<t > = f1t1 + ð1� f1Þt2

QUANTIFICATION AND STATISTICAL ANALYSIS

Figure 1B. Top 900 significant peaks defined top 900 ranked peaks from MACS2 v2.1.0 output against background control.

q-value cutoff = 0.05

Figure 1F. Boxplots show the interquartile range (IQR), with the median value marked by the line transecting the box. Values

falling outside the IQR but within the range of IQR ± 1.5 3 IQR are shown by the dashed line whisker. Where included, the notch

indicates the 95% confidence interval about the median, and further outliers represented by dots.

Figure 3C. Binding data were analyzed using the GraphPad Prism software. Binding profiles were fitted using a simple model

assuming a stoichiometry of one MITF dimer per double stranded DNA fragment. When KD values were higher than 500 nM,

the maximum specific binding value (Bmax) was estimated according to the one obtained from other variants and maintained

fixed for the fitting. KD values reported correspond to the means of three independent measurements and the ± error numbers

represent the standard deviations.

Figure 4A. p-values were calculated using a Two-Sample t-test, and the line in the box and whisker plots indicates the mean.

The exact number of embryos injected and melanocytes count are shown in Figure S3.

Figure 4E. p-values determined using Student’s t-test when comparing WT and K243Q mutant is % 0.003. Error-bar

indicated SEM.

Figure 5A. Center of the peaks were defined as the summit of each individual peak. The number of row = 103911, derived from

WT 20 ng reference.

Figure 5B.

All peaks were called using the following fixed parameters

# FDR rate threshold = 0.001000000

# Fold over input = 4.00

# Poisson p value over input = 1.00e-04

# Fold over local region = 4.00

# Poisson p-value over local region = 1.00e-04

and variable parameters (modeled according to each dataset as these are sequencing depth dependent)

# FDR effective poisson threshold

# FDR tag threshold

Figure 5E. Boxplots show IQR with median value marked by line of the same color as the box and mean value marked by

black line. Whiskers cover values between IQR and ± 1.5 3 IQR. Any values outside 1.5 3 IQR are plotted with circle.

Figures 6C–6F. Ncells = 20; 6; 15; 15; Ndisplacements = 17802; 2684; 16422; 12999 for MITF WT, Dbasic, K243Q, K243R respec-

tively. Error bars indicate SD.
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