639 research outputs found

    Endoscopy : an evolving speciality

    Get PDF
    The practice of endoscopy has been rapidly changing due to new emerging technologies and novel techniques. There has been more focus on colonoscopy training with the development of structured programmes including simulators. Chromoendoscopy and magnification endoscopy have enabled improved diagnosis of small neoplastic lesions and will be important for the success of colorectal cancer screening programmes. The small bowel is now accessible to diagnostic modalities like capsule endoscopy and to therapeutic tools through the double balloon enteroscope. Endoscopic therapy has also become more sophisticated with endoscopic therapy of reflux disease now possible. Excision of large colorectal adenomatous polyps by endoscopic mucosal resection and dissection of submucosal tumours may reduce the need for surgical intervention. The practice of endoscopy has rapidly changed over the past few years. What was once a simple diagnostic procedure made possible by the development of fibre optics has become a speciality in its own right. This article will highlight some aspects of endoscopic practice that have undergone major changes over the past few years and that will shape endoscopy practice in the future.peer-reviewe

    Overview of the University of Pennsylvania CORE System Standard Graphics Package Implementation

    Get PDF
    The CORE System is a proposed standard for a device-independent graphics system. The concept of a device-independent system was first developed in 1977 by the Graphics Standards Planning Committee (GSPC) of ACM Siggraph and later refined in 1979 [1,2]. The CORE System design has received favorable reviews and has been implemented by various vendors at several universities, and other computing facilities (e.g. [3,7]). The main objectives of the CORE System are to provide uniformity, compatibility, and flexibility in graphics software. Three advantages that the CORE system provides over non-standard graphics systems are device independence, program portability, and functional completeness. A large number of different graphics hardware devices currently exist with a wide range of available functions. The CORE System provides device independence by shielding the applications programmer from specific hardware characteristics. The shielding is at the functional level: the device-independent (DI) system uses internal routines to convert the application programmer\u27s functional commands to specific commands for the selected hardware device driver (DD). The progammer describes a graphical world to the CORE System in device-independent normalized device coordinates. The programmer also specifies the viewport on the logical view surface (output device) where a picture segment is to be placed. As the CORE System becomes the accepted standard graphics package, program portability will become more feasible. Program portability means the ability to transport application programs between two sites without requiring structural modifications. The CORE System was designed for functional completeness so that any graphics function a programmer desires is either included within the system or can be easily built on top of CORE System routines

    TrkB Isoforms Differentially Affect AICD Production through Their Intracellular Functional Domains

    Get PDF
    We report that NTRK2, the gene encoding for the TrkB receptor, can regulate APP metabolism, specifically AICD levels. Using the human neuroblastoma cell line SH-SY5Y, we characterized the effect of three TrkB isoforms (FL, SHC, T) on APP metabolism by knockdown and overexpression. We found that TrkB FL increases AICD-mediated transcription and APP levels while it decreases sAPP levels. These effects were mainly mediated by the tyrosine kinase activity of the receptor and partially by the PLC-γ- and SHC-binding sites. The TrkB T truncated isoform did not have significant effects on APP metabolism when transfected by itself, while the TrkB SHC decreased AICD-mediated transcription. TrkB T abolished TrkB FL effects on APP metabolism when cotransfected with it while TrkB SHC cotransfected with TrkB FL still showed increased APP levels. In conclusion, we demonstrated that TrkB isoforms have differential effects on APP metabolism

    Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity

    Get PDF
    Macrophages resident in different organs express distinct genes, but understanding how this diversity fits into tissue-specific features is limited. Here, we show that selective expression of coagulation factor V (FV) by resident peritoneal macrophages in mice promotes bacterial clearance in the peritoneal cavity and serves to facilitate the well-known but poorly understood macrophage disappearance reaction. Intravital imaging revealed that resident macrophages were nonadherent in peritoneal fluid during homeostasis. Bacterial entry into the peritoneum acutely induced macrophage adherence and associated bacterial phagocytosis. However, optimal control of bacterial expansion in the peritoneum also required expression of FV by the macrophages to form local clots that effectively brought macrophages and bacteria in proximity and out of the fluid phase. Thus, acute cellular adhesion and resident macrophage-induced coagulation operate independently and cooperatively to meet the challenges of a unique, open tissue environment. These events collectively account for the macrophage disappearance reaction in the peritoneal cavity

    BLAST: the Redshift Survey

    Get PDF
    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed ~8.7 deg^2 centered on GOODS-South at 250, 350, and 500 microns. In Dye et al. (2009) we presented the catalogue of sources detected at 5-sigma in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 82 of these counterparts. The spectra show that the BLAST counterparts are mostly star-forming galaxies but not extreme ones when compared to those found in the Sloan Digital Sky Survey. Roughly one quarter of the BLAST counterparts contain an active nucleus. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies, showing that the standard methods work well even when a galaxy contains a large amount of dust. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST bands. We find strong evolution out to z=1, in the sense that there is a large increase in the space-density of the most luminous galaxies. We have also investigated the evolution of the dust-mass function, finding similar strong evolution in the space-density of the galaxies with the largest dust masses, showing that the luminosity evolution seen in many wavebands is associated with an increase in the reservoir of interstellar matter in galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps and associated results are available at http://blastexperiment.info

    Anisotropic pH-Responsive Hydrogels Containing Soft or Hard Rod-Like Particles Assembled Using Low Shear

    Get PDF
    A simple and versatile low-shear approach for assembling hydrogels containing aligned rod-like particles (RLPs) that are birefringent and exhibit pH-triggered anisotropic swelling is developed. Anisotropic composite hydrogels are prepared by applying low shear (0.1 s–1) to mixtures of pH-responsive nanogels (NGs) and RLPs. The NGs, which contained high methacrylic acid contents, acted as both shear transfer vehicles and macro-cross-linkers for anisotropic gel formation. Three model RLP systems are investigated: (i) soft triblock copolymer worms, (ii) stiff self-assembled β-sheet peptide fibers, and (iii) ultrahigh modulus nanocrystalline cellulose fibers. RLP alignment was confirmed using polarized light imaging, atomic force microscopy, and small-angle X-ray scattering as well as modulus and anisotropic swelling experiments. Unexpectedly, the composite gel containing the soft copolymer worms showed the most pronounced anisotropy swelling. The copolymer worms enabled higher RLP loadings than was possible for the stiffer RLPs. For fixed RLP loading, the extent of anisotropic swelling increased with intra-RLP bonding strength. The facile and versatile approach to anisotropic gel construction demonstrated herein is expected to enable new applications for strain sensing or biomaterials for soft tissue repair

    Telomeric expression sites are highly conserved in trypanosoma brucei

    Get PDF
    Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology
    corecore