1,800 research outputs found

    Ariel - Volume 9 Number 5

    Get PDF
    Executive Editor Seth B. Paul Associate Editor Warren J. Ventriglia Business Manager Fredric Jay Matlin University News John Patrick Welch World News George Robert Coar Editorials Editor Steve Levine Features Mark Rubin Brad Feldstein Sports Editor Eli Saleeby Photo Editor Ken Buckwalter Circulation Victor Onufreiczuk Lee Wugofski Graphics and Art Steve Hulkower Commons Editor Brenda Peterso

    Diversity and Keratin Degrading Ability of Fungi Isolated from Canadian Arctic Marine Bird Feathers

    Get PDF
    We present the first records of fungi associated with feathers from seabirds and sea ducks in the Canadian Arctic and sub-Arctic. Birds sampled in Nunavut and Newfoundland (Canada) included the Common Eider (Somateria mollissima), King Eider (S. spectabilis), Black-legged Kittiwake (Rissa tridactyla), Northern Fulmar (Fulmarus glacialis), Glaucous Gull (Larus hyperboreus), Black Guillemot (Cepphus grylle), and Thick-billed Murre (Uria lomvia). In total 19 fungal species were cultured from feathers, identified using ITS rDNA barcoding, and screened for their ability to degrade keratin using a keratin azure assay. Our results indicate that 1) of the 19 isolates, 74% were ascomycetes, while the remaining 26% were basidiomycetes (yeasts); 2) 21% of the ascomycete isolates demonstrated keratinolytic activity (a known pathogenicity factor for fungi that may potentially be harmful to birds); 3) the largest number of fungi were cultured from the sampled Thick-billed Murre; and 4) based on a multiple correspondence analysis, there is some indication that both the King Eider and the Thick-billed Murre collected in the low Arctic had distinct fungal communities that were different from each other and from the other birds sampled. Although our sample sizes were small, initial trends in point (4) do demonstrate that additional study is merited to assess whether the fungal community differences are influenced by variation in the known ecologies of the avian hosts and fungi identified.Nous prĂ©sentons les premiers enregistrements de champignons se rapportant aux plumes d’oiseaux et de canards de mer dans l’Arctique et la rĂ©gion subarctique du Canada. Parmi les oiseaux Ă©chantillonnĂ©s au Nunavut et Ă  Terre-Neuve (Canada), notons l’eider Ă  duvet (Somateria mollissima), l’eider Ă  tĂȘte grise (S. spectabilis), la mouette tridactyle (Rissa tridactyla), le fulmar borĂ©al (Fulmarus glacialis), le goĂ©land bourgmestre (Larus hyperboreus), le guillemot Ă  miroir (Cepphus grylle) et le guillemot de BrĂŒnnich (Uria lomvia). En tout, 19 espĂšces de champignons ont Ă©tĂ© prĂ©levĂ©es Ă  partir de plumes. Elles ont Ă©tĂ© identifiĂ©es au moyen de codes Ă  barres ITS ADNr et examinĂ©es afin de dĂ©terminer si elles sont capables de dĂ©grader la kĂ©ratine, et ce, Ă  l’aide d’une Ă©preuve de dĂ©gradation de la kĂ©ratine au bleu azur. Nos rĂ©sultats indiquent : 1) que parmi les 19 isolats, 74 % Ă©taient des ascomycĂštes et que les 26 % restants Ă©taient des basidiomycĂštes (levures); 2) que 21 % des isolats d’ascomycĂštes ont affichĂ© une activitĂ© kĂ©ratinolytique (un facteur de pathogĂ©nicitĂ© pour les champignons, facteur susceptible de nuire aux oiseaux); 3) que le plus grand nombre de cultures de champignons a Ă©tĂ© prĂ©levĂ© chez le guillemot de BrĂŒnnich; et 4) que d’aprĂšs une analyse de correspondance multiple, il y a une certaine indication que les Ă©chantillons de l’eider Ă  tĂȘte grise et du guillemot de BrĂŒnnich recueillis dans le Bas-Arctique comprenaient des communautĂ©s fongiques distinctes qui diffĂ©raient les unes des autres ainsi que des autres oiseaux Ă©chantillonnĂ©s. MĂȘme si la taille de nos Ă©chantillons Ă©tait petite, les premiĂšres tendances ressortant du point (4) dĂ©montrent qu’il y a lieu de faire des Ă©tudes plus poussĂ©es afin de dĂ©terminer si les diffĂ©rences entre les communautĂ©s fongiques sont influencĂ©es par la variation des Ă©cologies connues des hĂŽtes aviaires et des champignons identifiĂ©s

    Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (ÎŽ13C and ÎŽ15N)

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 3 (2015): e874, doi:10.7717/peerj.874.Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both Ύ13C and Ύ15N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the Ύ15N values in nearly all comparisons. Ethanol also had strong effects on the Ύ13C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding low levels of mass loss with a substantial change in the isotope value of the sample. Regardless of mechanism, it was evident that accounting for offsets caused by different preservation methods was not possible using the standard correction. Caution is warranted when interpreting the results from specimens stored in either ethanol or salt, especially when using those from multiple preservation techniques. We suggest the use of ice as the preferred preservation technique for muscle tissue when conducting stable isotope analysis as it is widely available, inexpensive, easy to transport and did not impart a significant offset in measured isotopic values. Our results provide additional evidence that preservation effects on stable isotope analysis can be highly contextual, thus requiring their effects to be measured and understood for each species and isotopic ratio of interest before addressing research questions.Funding was provided by a grant to CD Stallings and TS Switzer from the National Oceanic and Atmospheric Administration, Cooperative Research Program (NA12NMF4540081)

    Ariel - Volume 8 Number 4

    Get PDF
    Executive Editor James W. Lockard Jr. Issues Editor Neeraj K. Kanwal Business Manager Neeraj K. Kanwal University News Martin Trichtinger World News Doug Hiller Opinions Elizabeth A. McGuire Features Patrick P. Sokas Sports Desk Shahab S. Minassian Managing Editor Edward H. Jasper Managing Associate Brenda Peterson Photography Editor Robert D. Lehman, Jr. Graphics Christine M. Kuhnl

    Ariel - Volume 8 Number 2

    Get PDF
    Executive Editor James W. Lockard , Jr. Issue Editor Doug Hiller Business Manager Neeraj K. Kanwal University News Richard J. Perry World News Doug Hiller Opinions Elizabeth A. McGuire Features Patrick P. Sokas Sports Desk Shahab S. Minassian Managing Editor Edward H. Jasper Managing Associate Brenda Peterson Photography Editor Robert D. Lehman, Jr. Graphics Christine M. Kuhnl

    Neuroethology of primate social behavior

    Get PDF
    A neuroethological approach to human and nonhuman primate behavior and cognition predicts biological specializations for social life. Evidence reviewed here indicates that ancestral mechanisms are often duplicated, repurposed, and differentially regulated to support social behavior. Focusing on recent research from nonhuman primates, we describe how the primate brain might implement social functions by coopting and extending preexisting mechanisms that previously supported nonsocial functions. This approach reveals that highly specialized mechanisms have evolved to decipher the immediate social context, and parallel circuits have evolved to translate social perceptual signals and nonsocial perceptual signals into partially integrated social and nonsocial motivational signals, which together inform general-purpose mechanisms that command behavior. Differences in social behavior between species, as well as between individuals within a species, result in part from neuromodulatory regulation of these neural circuits, which itself appears to be under partial genetic control. Ultimately, intraspecific variation in social behavior has differential fitness consequences, providing fundamental building blocks of natural selection. Our review suggests that the neuroethological approach to primate behavior may provide unique insights into human psychopathology

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Teratology Primer-2nd Edition (7/9/2010)

    Get PDF
    Foreword: What is Teratology? “What a piece of work is an embryo!” as Hamlet might have said. “In form and moving how express and admirable! In complexity how infinite!” It starts as a single cell, which by repeated divisions gives rise to many genetically identical cells. These cells receive signals from their surroundings and from one another as to where they are in this ball of cells —front or back, right or left, headwards or tailwards, and what they are destined to become. Each cell commits itself to being one of many types; the cells migrate, combine into tissues, or get out of the way by dying at predetermined times and places. The tissues signal one another to take their own pathways; they bend, twist, and form organs. An organism emerges. This wondrous transformation from single celled simplicity to myriad-celled complexity is programmed by genes that, in the greatest mystery of all, are turned on and off at specified times and places to coordinate the process. It is a wonder that this marvelously emergent operation, where there are so many opportunities for mistakes, ever produces a well-formed and functional organism. And sometimes it doesn’t. Mistakes occur. Defective genes may disturb development in ways that lead to death or to malformations. Extrinsic factors may do the same. “Teratogenic” refers to factors that cause malformations, whether they be genes or environmental agents. The word comes from the Greek “teras,” for “monster,” a term applied in ancient times to babies with severe malformations, which were considered portents or, in the Latin, “monstra.” Malformations can happen in many ways. For example, when the neural plate rolls up to form the neural tube, it may not close completely, resulting in a neural tube defect—anencephaly if the opening is in the head region, or spina bifida if it is lower down. The embryonic processes that form the face may fail to fuse, resulting in a cleft lip. Later, the shelves that will form the palate may fail to move from the vertical to the horizontal, where they should meet in the midline and fuse, resulting in a cleft palate. Or they may meet, but fail to fuse, with the same result. The forebrain may fail to induce the overlying tissue to form the eye, so there is no eye (anophthalmia). The tissues between the toes may fail to break down as they should, and the toes remain webbed. Experimental teratology flourished in the 19th century, and embryologists knew well that the development of bird and frog embryos could be deranged by environmental “insults,” such as lack of oxygen (hypoxia). But the mammalian uterus was thought to be an impregnable barrier that would protect the embryo from such threats. By exclusion, mammalian malformations must be genetic, it was thought. In the early 1940s, several events changed this view. In Australia an astute ophthalmologist, Norman Gregg, established a connection between maternal rubella (German measles) and the triad of cataracts, heart malformations, and deafness. In Cincinnati Josef Warkany, an Austrian pediatrician showed that depriving female rats of vitamin B (riboflavin) could cause malformations in their offspring— one of the early experimental demonstrations of a teratogen. Warkany was trying to produce congenital cretinism by putting the rats on an iodine deficient diet. The diet did indeed cause malformations, but not because of the iodine deficiency; depleting the diet of iodine had also depleted it of riboflavin! Several other teratogens were found in experimental animals, including nitrogen mustard (an anti cancer drug), trypan blue (a dye), and hypoxia (lack of oxygen). The pendulum was swinging back; it seemed that malformations were not genetically, but environmentally caused. In Montreal, in the early 1950s, Clarke Fraser’s group wanted to bring genetics back into the picture. They had found that treating pregnant mice with cortisone caused cleft palate in the offspring, and showed that the frequency was high in some strains and low in others. The only difference was in the genes. So began “teratogenetics,” the study of how genes influence the embryo’s susceptibility to teratogens. The McGill group went on to develop the idea that an embryo’s genetically determined, normal, pattern of development could influence its susceptibility to a teratogen— the multifactorial threshold concept. For instance, an embryo must move its palate shelves from vertical to horizontal before a certain critical point or they will not meet and fuse. A teratogen that causes cleft palate by delaying shelf movement beyond this point is more likely to do so in an embryo whose genes normally move its shelves late. As studies of the basis for abnormal development progressed, patterns began to appear, and the principles of teratology were developed. These stated, in summary, that the probability of a malformation being produced by a teratogen depends on the dose of the agent, the stage at which the embryo is exposed, and the genotype of the embryo and mother. The number of mammalian teratogens grew, and those who worked with them began to meet from time to time, to talk about what they were finding, leading, in 1960, to the formation of the Teratology Society. There were, of course, concerns about whether these experimental teratogens would be a threat to human embryos, but it was thought, by me at least, that they were all “sledgehammer blows,” that would be teratogenic in people only at doses far above those to which human embryos would be exposed. So not to worry, or so we thought. Then came thalidomide, a totally unexpected catastrophe. The discovery that ordinary doses of this supposedly “harmless” sleeping pill and anti-nauseant could cause severe malformations in human babies galvanized this new field of teratology. Scientists who had been quietly working in their laboratories suddenly found themselves spending much of their time in conferences and workshops, sitting on advisory committees, acting as consultants for pharmaceutical companies, regulatory agencies, and lawyers, as well as redesigning their research plans. The field of teratology and developmental toxicology expanded rapidly. The following pages will show how far we have come, and how many important questions still remain to be answered. A lot of effort has gone into developing ways to predict how much of a hazard a particular experimental teratogen would be to the human embryo (chapters 9–19). It was recognized that animal studies might not prove a drug was “safe” for the human embryo (in spite of great pressure from legislators and the public to do so), since species can vary in their responses to teratogenic exposures. A number of human teratogens have been identified, and some, suspected of teratogenicity, have been exonerated—at least of a detectable risk (chapters 21–32). Regulations for testing drugs before market release have greatly improved (chapter 14). Other chapters deal with how much such things as population studies (chapter 11), post-marketing surveillance (chapter 13), and systems biology (chapter 16) add to our understanding. And, in a major advance, the maternal role of folate in preventing neural tube defects and other birth defects is being exploited (chapter 32). Encouraging women to take folic acid supplements and adding folate to flour have produced dramatic falls in the frequency of neural tube defects in many parts of the world. Progress has been made not only in the use of animal studies to predict human risks, but also to illumine how, and under what circumstances, teratogens act to produce malformations (chapters 2–8). These studies have contributed greatly to our knowledge of abnormal and also normal development. Now we are beginning to see exactly when and where the genes turn on and off in the embryo, to appreciate how they guide development and to gain exciting new insights into how genes and teratogens interact. The prospects for progress in the war on birth defects were never brighter. F. Clarke Fraser McGill University (Emeritus) Montreal, Quebec, Canad

    Considering Transposable Element Diversification in De Novo Annotation Approaches

    Get PDF
    Transposable elements (TEs) are mobile, repetitive DNA sequences that are almost ubiquitous in prokaryotic and eukaryotic genomes. They have a large impact on genome structure, function and evolution. With the recent development of high-throughput sequencing methods, many genome sequences have become available, making possible comparative studies of TE dynamics at an unprecedented scale. Several methods have been proposed for the de novo identification of TEs in sequenced genomes. Most begin with the detection of genomic repeats, but the subsequent steps for defining TE families differ. High-quality TE annotations are available for the Drosophila melanogaster and Arabidopsis thaliana genome sequences, providing a solid basis for the benchmarking of such methods. We compared the performance of specific algorithms for the clustering of interspersed repeats and found that only a particular combination of algorithms detected TE families with good recovery of the reference sequences. We then applied a new procedure for reconciling the different clustering results and classifying TE sequences. The whole approach was implemented in a pipeline using the REPET package. Finally, we show that our combined approach highlights the dynamics of well defined TE families by making it possible to identify structural variations among their copies. This approach makes it possible to annotate TE families and to study their diversification in a single analysis, improving our understanding of TE dynamics at the whole-genome scale and for diverse species
    • 

    corecore