10 research outputs found

    Understorey light quality affects leaf pigments and leaf phenology in different plant functional types

    Get PDF
    Forest understorey plants receive most sunlight in springtime before canopy closure, and in autumn following leaf-fall. We hypothesized that plant species must adjust their phenological and photoprotective strategies in response to large changes in the spectral composition of the sunlight they receive. Here, we identified how plant species growing in northern deciduous and evergreen forest understoreys differ in their response to blue light and ultraviolet (UV) radiation according to their functional strategy. We installed filters in a forest understorey in southern Finland, to create the following treatments attenuating: UV radiation < 350 nm, all UV radiation (< 400 nm), all blue light and UV radiation (< 500 nm), and a transparent control. In eight species, representing different functional strategies, we assessed leaf optical properties, phenology, and epidermal flavonoid contents over two years. Blue light accelerated leaf senescence in all species measured in the understorey, apart from Quercus robur seedlings, whereas UV radiation only accelerated leaf senescence in Acer platanoides seedlings. More light-demanding species accumulated flavonols in response to seasonal changes in light quality compared to shade-tolerant and wintergreen species and were particularly responsive to blue light. Reduction of blue and UV radiation under shade reveals an important role for microclimatic effects on autumn phenology and leaf photoprotection. An extension of canopy cover under climate change, and its associated suppression of understorey blue light and UV radiation, may delay leaf senescence for understorey species with an autumn niche.Peer reviewe

    Greater capacity to exploit warming temperatures in northern populations of European beech is partly driven by delayed leaf senescence

    Get PDF
    One of the most widespread consequences of climate change is the disruption of trees’ phenological cycles. The extent to which tree phenology varies with local climate is largely genetically determined, and while a combination of temperature and photoperiodic cues are typically found to trigger bud burst (BB) in spring, it has proven harder to identify the main cues driving leaf senescence (LS) in autumn. We used 905 individual field observations of BB and LS from six Fagus sylvatica populations, covering the range of environmental conditions found across the species distribution, to: (i) estimate the dates of BB and LS of these populations; (ii) assess the main drivers of LS; and (iii) predict the likely variation in growing season length (GSL; defined as the period from BB to LS timing) across populations under current and future climate scenarios. To this end, we first calibrated linear mixed-effects models for LS as a function of temperature, insolation and BB date. Secondly, we calculated GSL for each population as the number of days between BB and LS. We found that: i) there were larger differences among populations in the date of BB than in the date of LS; ii) the temperature through September, October and November was the main determinant of LS, although covariation of temperature with daily insolation and precipitation-related variables suggests that all three variables may affect LS timing; and iii) GSL was predicted to increase in northern populations and to shrink in central and southern populations under climate change. Consequently, the large present-day differences in GSL across the range of beech are likely to decrease under future climates where rising temperatures will alter the relationship between BB and LS. Northern populations are likely to increase their productivity as warmer conditions will enable them to extend their growing season.Peer reviewe

    The importance and direction of current and future plant-UV research : break-out session discussions at the UV4Plants Network Meeting in Bled (April 15th -18th , 2018)

    Get PDF
    During the 2nd Network Meeting of UV4Plants at Bled (14th–18th April, 2018) the delegates engaged in a group discussion of prescient questions concerning the future of in plant-UV research. The discussion group was tasked to identify the most valuable directions for plant UV research to take, and to create a coherent framework for how to move the field forward. Here, the outcome of these discussions is summarised in sections that follow the composition of discussion groups as ideas taken from a molecular, biochemical and physiological perspective followed by those from an ecological and plant production perspective. In each case, first basic research questions are considered and then applications and methodological considerations are put forward. Finally, some common ground bringing the two perspectives together is discussed, with the aim of solving scaling problems and ways in which the UV4Plants network might be put to good use.Peer reviewe

    Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning

    Get PDF
    Borneo contains some of the world's most biodiverse and carbon-dense tropical forest, but this 750 000 km(2) island has lost 62% of its old-growth forests within the last 40 years. Efforts to protect and restore the remaining forests of Borneo hinge on recognizing the ecosystem services they provide, including their ability to store and sequester carbon. Airborne laser scanning (ALS) is a remote sensing technology that allows forest structural properties to be captured in great detail across vast geographic areas. In recent years ALS has been integrated into statewide assessments of forest carbon in Neotropical and African regions, but not yet in Asia. For this to happen new regional models need to be developed for estimating carbon stocks from ALS in tropical Asia, as the forests of this region are structurally and composition-ally distinct from those found elsewhere in the tropics. By combining ALS imagery with data from 173 permanent forest plots spanning the lowland rainforests of Sabah on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks using ALS-derived canopy height and canopy cover as input metrics. An advanced feature of this new model is the propagation of uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of carbon stocks to be quantified robustly. We show that the model effectively captures variation in aboveground carbon stocks across extreme disturbance gradients spanning tall dipterocarp forests and heavily logged regions and clearly outperforms existing ALS-based models calibrated for the tropics, as well as currently available satellite-derived products. Our model provides a simple, generalized and effective approach for mapping forest carbon stocks in Borneo and underpins ongoing efforts to safeguard and facilitate the restoration of its unique tropical forests.Peer reviewe

    A perspective on ecologically relevant plant-UV research and its practical application

    Get PDF
    Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.Peer reviewe

    Balancing open science and data privacy in the water sciences

    No full text
    Open science practices such as publishing data and code are transforming water science by enabling synthesis and enhancing reproducibility. However, as research increasingly bridges the physical and social science domains (e.g., socio-hydrology), there is the potential for well-meaning researchers to unintentionally violate the privacy and security of individuals or communities by sharing sensitive information. Here, we identify the contexts in which privacy violations are most likely to occur, such as working with high-resolution spatial data (e.g., from remote sensing), consumer data (e.g., from smart meters), and/or digital trace data (e.g., from social media). We also suggest practices for identifying and addressing privacy concerns at the individual, institutional, and disciplinary levels. We strongly advocate that the water science community continue moving toward open science and socio-environmental research and that progress toward these goals be rooted in open and ethical data management.by Udit Bhatia et al

    Hyperspectral Remote Sensing of Forests: Technological advancements, Opportunities and Challenges

    No full text
    corecore