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Abstract  22 

One of the most widespread consequences of climate change is the disruption of trees’ 23 

phenological cycles. The extent to which tree phenology varies with local climate is largely 24 

genetically determined, and while a combination of temperature and photoperiodic cues are 25 

typically found to trigger bud burst (BB) in spring, it has proven harder to identify the main cues 26 

driving leaf senescence (LS) in autumn. We used 905 individual field-observations of BB and LS 27 

from six Fagus sylvatica populations, covering the range of environmental conditions found across 28 

the species distribution, to: (i) estimate the dates of BB and LS of these populations; (ii) assess the 29 

main drivers of LS; and (iii) predict the likely variation in growing season length (GSL; defined 30 

as the period from BB to LS timing) across populations under current and future climate scenarios. 31 

To this end, we first calibrated linear mixed-effects models for LS as a function of temperature, 32 

insolation and BB date. Secondly, we calculated GSL for each population as the number of days 33 

between BB and LS. We found that: i) there were larger differences among populations in the date 34 

of BB than in the date of LS; ii) the temperature through September, October and November was 35 

the main determinant of LS, although covariation of temperature with daily insolation and 36 

precipitation-related variables suggests that all three variables may affect LS timing; and iii) GSL 37 

was predicted to increase in northern populations and to shrink in central and southern populations 38 

under climate change. Consequently, the large present-day differences in GSL across the range of 39 

beech are likely to decrease under future climates where rising temperatures will alter the 40 

relationship between BB and LS. Northern populations are likely to increase their productivity as 41 

warmer conditions will enable them to extend their growing season.  42 

Key words (4-6): Fagus sylvatica, spring phenology, autumn phenology, environmental factors, 43 

provenance effect, climate change 44 



 45 

1 Introduction 46 

Plants are changing their phenological cycles in response to current climate change (Chmura et al. 47 

2018). Generally, these changes involve a combination of advances in spring leaf phenology and 48 

delays in autumn leaf phenology (Gallinat et al. 2015; Piao et al. 2015; Yang et al. 2017), resulting 49 

in a longer growing season (Walther et al. 2002; Estiarte and Peñuelas 2015) and potentially 50 

increasing forest net ecosystem productivity (NEP) (Way and Montgomery 2015). Phenological 51 

responses to environmental cues are to a large extent genetically determined in trees (Liang 2019).  52 

Numerous studies along elevational gradients and experiments in common-gardens have found 53 

bud burst (BB) in populations of different origin to occur at different dates in many tree species 54 

(Vitasse et al. 2013; Dantec et al. 2015; Sampaio et al. 2016; Kramer et al. 2017; Cooper et al. 55 

2018). Leaf senescence (LS) has been less widely studied in such settings, but it also differs 56 

inherently among populations of Betula pubescens (Pudas et al. 2008), Fraxinus americana (Liang 57 

2015), Populus balsamifera (Soolanayakanahally et al. 2013), Populus deltoides (Friedman et al. 58 

2011), Populus tremula (Michelson et al. 2018; Wang et al. 2018) and Populus trichocarpa (Porth 59 

et al. 2015). However, it is not yet clear to what extent the genetic determinism and the 60 

environmental cues of BB match those for LS, and how the interplay of BB and LS drives among-61 

population variation in growing-season length (GSL) (Signarbieux et al. 2017).  62 

Extensive research has identified cold winter temperatures (i.e., chilling requirements) and 63 

accumulated spring temperatures  (i.e., forcing requirements) as the main drivers of BB; sometimes 64 

coupled with photoperiod (Basler and Körner 2014; Fu et al. 2015) (Fig. 1). The major drivers of 65 

LS have been more difficult to identify (Gallinat et al. 2015; Brelsford et al. 2019). A recent meta-66 

analysis showed that summer and autumn temperatures, precipitation and long photoperiod can all 67 



affect LS  (Gill et al. 2015). Generally, temperature tends to be predominant at lower latitudes 68 

(Pudas et al. 2008; Lang et al. 2019), whereas photoperiod is more important at higher latitudes 69 

(Soolanayakanahally et al. 2013; Lang et al. 2019) (Fig. 1). Yet temperature effects on LS are not 70 

straightforward: increasing summer and autumn temperatures and even moderate drought can 71 

delay LS (Xie et al. 2015), whereas severe drought tends to promote earlier LS (Chen et al. 2015; 72 

Estiarte and Peñuelas 2015), (Fig. 1). Finally, high insolation and high photoperiod may also delay 73 

LS  (Liu et al. 2016a) (Fig. 1). The complex nature of the environmental triggers of LS has to-date 74 

hampered attempts to understand the causes of its variation across large geographical scales 75 

(Chmura et al. 2018). This uncertainty makes it very difficult to estimate GSL across species 76 

ranges. Recent studies based on in-situ records and satellite data have shown positive correlations 77 

between the timing of BB and LS that tend to stabilize GSL across populations (Keenan and 78 

Richardson 2015; Liu et al. 2016b). But this is not a universal finding and the extent to which GSL 79 

can change depends on the combination of many factors, as explained in Fig. 1.  80 

 81 



Figure 1. Environmental drivers of growing season length through their effects on bud burst and 82 

leaf senescence. GSL: growing season length; EV: environmental variables; BBR: bud burst 83 

response; LSR: leaf senescence response; Twin/spr: winter and spring temperatures; Tsum/aut: 84 

summer and autumn temperatures; Phot: photoperiod; In: insolation; Chill: chilling requirements; 85 

Psum: summer precipitation; Drou: drought; Columns EV: up arrow: increase in the environmental 86 

variable; down arrow: decrease in the environmental variable; Columns BBR and LSR: left arrow: 87 

early bud burst/leaf senescence; right arrow: delayed bud burst/leaf senescence; Green colour and 88 

green leaf: Reference, EV related to bud burst and BBR; Orange colour and orange leaf: Reference, 89 

EV related to leaf senescence and LSR. All the combinations of bud burst and leaf senescence 90 

responses defining the growing season length are possible. 91 

Fagus sylvatica L. (European beech, henceforth “beech”) is one of the most dominant and 92 

widespread broadleaf forest trees in Europe (Preston and Hill 1997), and it is of high ecological 93 

and economic importance (Packham et al. 2012). In beech, BB responds to a combination of 94 

chilling and forcing temperature requirements (Heide 1993; Falusi and Calamassi 2012; Kramer 95 

et al. 2017) as well as to photoperiod (Heide 1993; Caffarra and Donnelly 2011; Basler and Körner 96 

2012), with the strength of these drivers changing along environmental gradients. For instance, BB 97 

is more affected by photoperiod in colder climates, and by chilling requirements in warmer 98 

climates (Gárate-Escamilla et al. 2019). Studies of LS in beech suggest that: (i) temperature may 99 

be a more important cue than photoperiod when nutrients and water are not limiting (Fu et al. 100 

2018); (ii) non-senescent green leaves are prematurely lost as a result of severe drought conditions 101 

(Bréda et al. 2006);  (iv) early BB correlates with early LS (Fu et al. 2014; Chen et al. 2018; Zohner 102 

et al. 2018); (v) leaves first start to change colour in autumn from the upper part of the canopy, 103 

suggesting that hydraulic conductance or the amount of solar radiation received over the growing 104 



season may play a role in triggering LS (Gressler et al. 2015; Lukasová et al. 2019), although this 105 

could also be related to an hormonal effect (Zhang et al. 2011).  106 

Here, we investigate BB and LS in six different beech provenances (905 trees) planted in 107 

two common gardens in central Europe (Robson et al. 2018), and use this information to infer how 108 

range-wide patterns of beech GSL might evolve under future climate warming. Specifically, we 109 

attempt to: (i) estimate the dates of BB and LS, and how they differ among provenances; (ii) assess 110 

the main environmental drivers of LS; and (iii) predict GSL and how it would vary across 111 

populations under current and future climate.  112 

 113 

2 Materials and Methods 114 

2.1 Field trials and provenances 115 

Spring and autumn leaf phenological observations came from two common-gardens (i.e. 116 

provenance tests, genetic trials; hereafter “trials”) located in Schädtbek (54.30°N, 10.28°E), 117 

Germany, and Tále, Mláčik, Slovakia (48.62°N, 18.98°E) (henceforth termed “Germany” and 118 

“Slovakia” trials, respectively). These two tests belong to a large network of beech common-119 

gardens planted to understand the population (i.e. provenance effect including genetics) effects of 120 

climate change on fitness-related traits across the distribution range (details given in Robson et al. 121 

2018). These trials were planted with seeds collected from 38 provenances (32 provenances in 122 

Slovakia and six provenances in Germany) that roughly span the entire environmental range of 123 

beech (Fig. 2, Map). Seeds were germinated in the greenhouse and planted in the trials when two 124 

years old, in 1995 (Germany) and 1998 (Slovakia). To maintain a balanced design (same number 125 

of provenances per trial), we used only six provenances from each of the two trials (Fig. 2, Map & 126 



Table). The six provenances from the Slovakian trial were chosen based on their similar climatic 127 

origin to those planted in the German trial (Pearson correlation r ≥ 0.98). The provenances were 128 

ranked from colder (1) to warmer (6) origins (Fig. 2, Map & Table). Trees growing in Germany 129 

were measured at an age of 12 and 13 years, those in Slovakia at 11 and 12 years (Fig. 2, Table). 130 



 131 



 132 

Figure 2. Map: Geographical distribution of beech provenances (coloured circles) and trials 133 

(triangles) underlying this study. Beige shading indicates the distribution range of beech. Each 134 

circle colour indicates a pair of similar provenances from each trial (the colour gradient depicts the 135 

clinal variation from cold [blue] to warm [red] provenances, as defined in Table S1). Table:  136 

Climatic and geographic data that were used for merging provenances of similar climatic origin 137 

for modeling purposes. As the provenances were not shared between the two sites, we selected 138 

provenances of similar climatic characteristics. T: trial where the trees were measured 139 

(G=Germany, S=Slovakia); P: number of the provenances as shown in Figure 1; Lon: longitude; 140 

Lat: latitude; Elev: elevation (m); N: total number of trait measurements (including repeated 141 

measurements over years); NT: total number of individual trees; Age: age of the trees when 142 

measured; BIO14: precipitation of driest month; Ppet Min: minimal annual water balance; P JJA: 143 

precipitation of January, July and August; Tm JJA: mean temperature of January, July and August; 144 

Tm SON: mean temperature of September, October and November; DIM JJA: mean daily 145 

insolation of June, July and August; DIM SON: mean daily insolation of September, October and 146 

November; r: Pearson correlations per pair of provenances accommodated under the same number. 147 

 148 

2.2 Estimation of bud burst, leaf senescence and growing season length  149 

We transformed the observational stages (phenophases), and score data (qualitative measurements) 150 

for BB and LS to Julian days by fitting the phenophases (Fig. 3 and S1; Table S1 and S2) for each 151 

tree in every trial using the Weibull function (Robson et al. 2011; Gárate-Escamilla et al. 2019). 152 

The Weibull function is non-linear and asymptotic in the upper and lower limits, hence it  requires 153 



at least two censuses to obtain a fit of the data:  the day of the year (DOY) when BB is attained in 154 

spring (stage 2.5; Fig.3 and S1; Robson et al. 2013) and at the stage at which 50% of the trees’ 155 

leaves have changed colour from green to yellow (stage 3; Fig. 3 and S1; (Lang et al. 2019)). We 156 

calculated GSL for each tree as the number of days between the estimated dates of BB and LS 157 

(Estiarte and Peñuelas 2015). 158 

 159 

 2.3 Environmental data  160 

To separate the effects of the provenance (genetic effects) from those of the trial (environmental 161 

effects), we used the average climate from 1901 to 1990 for each provenance and the average 162 

climate during the years of measurement for the trials (Leites et al. 2012) in our models. We used 163 

the following precipitation- and temperature-related variables from EuMedClim (Fréjaville and 164 

Benito Garzón 2018): precipitation in the driest month (BIO14, mm), precipitation (P, mm) in 165 

June, July and August (JJA), minimal (Min) monthly water balance (PPET, mm), and mean 166 

temperature (Tm, °C) in June, July and August (JJA) and September, October and November 167 

(SON). In addition, we used latitude as a proxy of photoperiod as well as daily insolation, a 168 

function of day length and solar irradiance (Yeang 2007). We downloaded daily insolation data 169 

from the NASA Atmospheric Science Data Center (https://power.larc.nasa.gov/data-access-170 

viewer/), and we calculated solar radiation (direct and diffuse) over the wavelength range 400-171 

2700 nm incoming on a horizontal surface for a given location. We used insolation including NIR 172 

and SWIR, as well as PAR, because the mode of action is still unknown, so a direct heating effect 173 

from NIR and SWIR may be important. We calculated the mean daily insolation (DIM, kWh m-174 

2 d-1) between the months of June, July and August (JJA) and September, October and November 175 

(SON), respectively. As with the climatic variables, we characterized the DIM of the trial as the 176 

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/


average between the planting year and the year of measurement. Because the insolation data series 177 

from the NASA Atmospheric Science Data Center begins in July 1983, we characterized the DIM 178 

of the population as the average between 1984 and 1990 for JJA, and between 1983 and 1990 for 179 

SON.  180 

We used the 2070 Representative Concentration Pathway (RCP) 8.5 GISS-E2-R 181 

(http://www.worldclim.org/cmip5_30s) scenario for GSL predictions under future climate.  We 182 

deliberately chose only this pessimistic scenario because, for long-lived organisms such as forest 183 

trees, it makes little difference whether the projected situation will be reached in 2070 or some 184 

decades later. 185 

 186 

2.4 Statistical analysis 187 

We used a model of BB already calibrated for the same set of trials and provenances (Gárate 188 

Escamilla et al. 2019). We then performed a linear mixed-effects model for LS as a function of the 189 

combination of environmental variables with BB date as a co-variate. Environmental variables 190 

were selected individually to account for separate trial and provenance effects. Our model allowed 191 

us to: (i) estimate the date of LS for each of the six pairs of provenances; (ii) compare the date of 192 

LS with the date of BB that was already modelled following a similar methodology (Gárate 193 

Escamilla et al. 2019); (iii) calculate GSL for each provenance; and (iv) perform spatial predictions 194 

of BB, LS and GSL under current and future climate scenarios.  195 

 196 

2.4.1 Environmental variable selection 197 

http://www.worldclim.org/cmip5_30s


To avoid co-linearity and reduce the number of variables in our models, we only retained 198 

moderately correlated variables (-0.5 < r < 0.5) for modelling purposes. The full correlation matrix 199 

between all variables is provided in Fig. S2.  200 

 201 

2.4.2 Linear mixed-effects model of leaf senescence  202 

We performed a series of linear mixed-effects models of LS as a function of environmental 203 

variables from the trial and the provenances, with BB as a co-variable (Equation 1). Each model 204 

included one environmental variable from the provenance, one environmental variable from the 205 

trial site and BB as fixed effects. The trial, blocks nested within the trial, individual trees and 206 

provenances were included as random effects to control for differences among sites and for 207 

repeated measurements of the same tree. The general form of the LS model was: 208 

𝑙𝑜𝑔(𝐿𝑆𝑖𝑗𝑘) = 𝛼0 + 𝛼1(𝐸𝑃𝑖𝑗) + 𝛼2(𝐸𝑇𝑖𝑘) + 𝛼3(𝐵𝐵𝑖𝑘) + 𝛼4(𝐸𝑃𝑖𝑗 × 𝐸𝑇𝑖𝑘) + 𝛼5(𝐸𝑃𝑖𝑗 × 𝐵𝐵𝑖𝑘)209 

+ 𝛼6(𝐸𝑇𝑖𝑘 × 𝐵𝐵𝑖𝑘) + 𝛽 + 𝜀 210 

(Equation 1) 211 

Where LS = leaf senescence of the ith individual of the jth provenance in the kth trial; EP = 212 

environmental variable that characterizes the provenance site of the ith individual of the jth 213 

provenance; ET = environmental variable that characterizes the trial site of the ith individual in the 214 

kth trial; BB = bud burst of the ith individual in the kth trial; β = random effects and ε = residuals. In 215 

addition, the model included the following interaction terms: EP × ET, EP × BB, and ET × BB. 216 

EP × ET. Interactions represent differences in LS values that can be attributed to the interactions 217 

between genetic (provenance) and environmental (site) effects. EP × BB and ET × BB interactions 218 



represent the effects of the provenance on LS related to BB and the effects of the site related to 219 

BB.  220 

LS models were fitted with the ‘lmer’ function of the package ‘lme4’(Bates et al. 2018), 221 

within R statistical framework version 3.2.0 (R Development Core Team 2015). To choose the 222 

best supported model, we followed a stepwise procedure: (i) to minimize model complexity and 223 

collinearly among environmental variables, we selected the most important variable related to the 224 

trial by comparing a series of models that included one environmental variable for the trial and 225 

BB, and then selected the best model using the Akaike information criterion (AIC) with criterion 226 

delta < 2 (Mazerolle 2006), and the variance explained by the fixed effects (marginal R2) 227 

(Supplementary Table S3); (ii) we chose the optimal random component of the model by 228 

comparing the set of models that included different combinations of random effects, the previously 229 

selected environmental variable from the trial and BB using restricted maximum likelihood 230 

(REML), and selected the best model among them using the AIC criterion; (iii) we retained the 231 

best environmental variable related to the provenance comparing the models that included one 232 

environmental variable from the provenance, the selected variable from the trial, the BB, the 233 

interaction between the three variables and the random terms using maximum likelihood (ML) 234 

using the AIC criterion (Supplementary Table S4); (iv) we combined the best optimal random and 235 

fixed components (previously selected) and adjusted them using REML to obtain the best 236 

performing model. 237 

The goodness of fit of the final models was assessed using two approaches. First, we 238 

quantified the percentage variance explained by the model attributed to the fixed effects (marginal 239 

R2) and attributed to the fixed and random effects (conditional R2). Second, we measured the 240 

generalisation capacity of the model using cross-validation with independent data. To this end, we 241 



calibrated the model with 66% of the data and performed an independent validation (using Pearson 242 

correlations) with the remaining 34% of the data.  243 

 244 

2.4.3 Interactions of leaf senescence with bud burst and environmental variables 245 

For the best supported LS model, we analysed the significant interactions (EP × ET, EP × BB, and 246 

ET × BB in Equation 1) between LS and the environment (ET; represented by the environmental 247 

variable from the trial selected by the best supported LS model) and according to provenances  248 

showing early, mean and late BB. We also inspected gradients of GSL for the six provenances by 249 

plotting GSL against the environmental variable of the trial selected in the model (ET) and 250 

population under current conditions. We predicted the date of LS for the future climate scenario 251 

RCP 8.5 using our LS model and the date of BB for the same provenances according to  our BB 252 

model (Gárate-Escamilla et al. 2019), and plotted the predicted future GSL against ET for each of 253 

the provenances. 254 

 255 

2.4.4 Spatial predictions 256 

Spatial projections of LS were calculated using our LS model for current and future climatic 257 

conditions with predictions of BB from Gárate Escamilla et al. (2019). Predictions of GSL were 258 

calculated by subtracting the predicted BB from LS for both current and future climatic conditions 259 

across the species range. For both current and future predictions, the climate for provenances was 260 

represented by the average of the period from 1900 to 1990. The climate of the trials was 261 

represented by the average of the period from 2000 to 2014 for current predictions, and by the 262 

mean value for the year 2070 according to RCP 8.5 for future predictions.  263 



The current and future spatial predictions of BB and LS include a non-extrapolated area (i.e., 264 

predictions including exclusively the climatic range of the two trials, 7.5 to 10°C) and an 265 

extrapolated area (i.e., predictions outside the climatic range of the trials) delimited within the 266 

distribution range of the species (EUFORGEN 2009). Spatial analyses were performed with the 267 

‘raster’ package in R (Hijmans et al. 2017).  268 

 269 

3 Results 270 

3.1 Estimation of bud burst and autumn leaf senescence dates from field observations  271 

In both trials, differences among provenances were larger for spring leaf flush stages (including 272 

bud burst; Fig. 3a & b and S1a & b) than for autumn leaf senescence stages (including 50% yellow 273 

leaves; Fig. 3c & d and S1c & d). Although these differences were always statistically significant, 274 

they were larger in the Slovakian trial than in the German one (Fig. 3 and S1, Table S1 and S2). 275 

Differences in the predicted DOY of spring leaf flush and autumn leaf senescence stages were 276 

found for the two years of measurement in both trials (Fig. 3 and S1). We used the fitted data to 277 

extract the DOY for the flushing stage 2.5 (bud burst, BB) and the senescence stage 3 (= 50% of 278 

leaves yellow, LS) for each provenance (Tables S1 and S2).  279 



 280 

Figure 3. Predicted spring bud burst and autumn leaf senescence phenology, days of the year 281 

(DOY) against the observational stages recorded in the field for the two trials. SP: spring bud burst 282 

phenology; AP: autumn leaf senescence phenology. Provenance colours range from dark blue 283 



(cold origin) to dark red (warm origin) for the provenances in the two trials (Fig. 2, Map & Table). 284 

The spring leaf flushing and autumn leaf senescence stages are described in the lower part of the 285 

figure. The phenology stages were recorded in the year 2006 in Germany and 2008 in Slovakia. 286 

 287 

3.2 Variable selection and best model selection  288 

Our inspection of climate variables revealed that: (i) provenance and trial variables were not 289 

correlated with each other; (ii) temperature (Tm JJA and Tm SON)- and precipitation (BIO14, 290 

Ppet Min and Prec JJA)-related variables for the provenances were correlated, whilst daily 291 

insolation (DIM JJA and DIM SON) variables for the provenances were only correlated with the 292 

latitude (Lat) of the provenances; (iii) all the trial variables were correlated among themselves; 293 

and (iv) the co-variable BB was not correlated with the rest of variables (Fig. S2).  294 

In view of these results, we retained daily insolation (DIM JJA and DIM SON) and 295 

temperature-(Tm JJA and Tm SON)-related variables for the provenances, all climate variables 296 

from the trials, and BB as predictors for our models of LS. The best model according to AIC 297 

criteria (Tables S3 and S4) used the mean temperature in September, October and November (Tm 298 

SON) of the trial and of the provenance, and BB as a co-variable (Table 1 and Table S3).  299 

Table 1. Statistics from linear mixed-effects models of leaf senescence. Obs: number of trait 300 

measurements; Variance: variance explained by the random effects; SD: standard deviation of each 301 

level of random effects; Estimate: coefficient of the regression, shown on a logarithmic scale; SE: 302 

standard error of each fixed variable; t: Wald statistical test that measures the point estimate 303 

divided by the estimate of its SE, assuming a Gaussian distribution of observations conditional on 304 

fixed and random effects. Fixed effects: coefficients of the fixed effects of the model; BB: bud 305 



burst; Tm SON_T: mean temperature of September, October and November of the trial; Tm 306 

SON_P: mean temperature of September, October and November of the provenance. Coefficients 307 

of the interactions: BB x Tm SON_T and BB x Tm SON_P. r: Pearson correlation; R2M: 308 

percentage of the variance explained by the fixed effects (Marginal variance); R2C: percentage of 309 

the variance explained by the random and fixed effects (Conditional variance).  310 

 311 

  Leaf senescence 
Model Linear Mixed Effect 

  
Random Effects 

Obs Variance SD 
Population 12 3.33E-05 5.77E-03 

Trial 2 2.39E-02 1.55E-01 
Trial:Block 6 9.73E-06 3.10E-03 

Tree 925 1.88E-04 1.37E-02 
Residuals   2.34E-04 1.53E-02 

  
Fixed Effects 

Estimate SE t 
Intercept 5.62E+00 1.10E-01 51.16 

BB -8.18E-04 9.91E-05 -8.25 
Tm SON_T 2.88E-02 1.43E-02 2.02 
Tm SON_P 2.61E-02 8.10E-03 3.23 

BB x Tm SON_T 5.97E-04 9.61E-05 6.21 
BB x Tm SON_P -1.96E-04 6.60E-05 -2.97 

  
r  R2M R2C 

0.92 0.52 0.99 
 312 

 313 

3.3 Leaf senescence model 314 



LS differed among the provenances and between the two trials. These differences were explained 315 

by the Tm SON of the trial and provenance, as well as by BB (Table 1). Interactions between BB 316 

and Tm SON of the trial and provenance were also significant (Table 1). Late LS timing was 317 

related to higher Tm SON of the trial and provenances (Fig. 4). Late LS was related to late BB at 318 

high Tm SON of the trial, whilst at low trial Tm SON the opposite effect occurred (Fig. 4a). Late 319 

LS was related to early BB irrespective of Tm SON of the population (Fig. 4b). The marginal R2 320 

was 52%, while the conditional R2 was 99% (Table 1). The capacity for generalisation from the 321 

model was r = 0.92 (Table 1).  322 

 323 

Figure 4. Mathematical interaction between leaf senescence and the mean temperature in 324 

September, October and November (Tm SON) for the trial (a) and for the provenance (b).  The 325 

mathematical interaction is estimated from the LS linear mixed-effects model (equation 1), where 326 

BB is considered as a co-variable. Leaf senescence is given in Julian days, and Tm SON in °C. 327 

The black line represents delayed bud burst, the dark-grey mean bud-burst and the light-grey early 328 

bud-burst. The error bars represent the 95% confidence intervals. 329 

 330 



3.4 Determinants of growing season length under current and future climates  331 

GSL greatly increased with higher temperatures in September, October and November in the trials, 332 

although the strength of this effect depended on the origin of the provenances (Fig. 5). The increase 333 

in GSL was greatest for cold provenances (3.2-5.2 C°), which had their longest GSL under cold 334 

conditions (7.5-8.5 C°) at the trials in the current climate (Fig. 5a). In our two trials, GSL differed 335 

more among provenances under future than under current autumn temperatures (Fig. 5b). The 336 

longest GSL under future conditions was predicted at high trial temperatures (11.5-12 C°) for the 337 

warm (10.5-11.3 C°) and cold (3.2-5.2 C°) provenances, whilst at low trial temperatures (10.5-11 338 

C°), the longest GSL was predicted for warmer (10.5-11.3 C°) populations (Fig. 5b). 339 

When we extrapolate our models for the examined 2070 climate scenario, GSL is predicted to 340 

increase up to 9 days in the north-east of the range (Fig. 6). Decreases of GSL up to 8 days are 341 

predicted for much of the range including the central, southern, western and eastern areas; little or 342 

no change in GSL is predicted for the south-eastern-most range (Fig. 6).  343 

 344 



Figure 5. Interaction between growing season length and the mean temperature of September, 345 

October and November (Tm SON) of the trial, for (a) current climatic conditions (year of 346 

measurement minus year of plantation) and (b) the future climate scenario (RCP 8.5 for 2070). 347 

The colour gradient depicts the clinal variation from cold (blue) to warm (red) provenances (Tm 348 

SON). Growing season length is represented in days. The error bars represent the 95% confidence 349 

intervals. 350 

 351 

 352 



 353 

Figure 6. Spatial projections for (a) bud burst under current climatic conditions, (b) bud-burst 354 

differences between current and future conditions, (c) leaf senescence under current climatic 355 

conditions, (d) leaf-senescence differences between current and future conditions, (e) growing-356 



season length under current climatic conditions and (e) growing-season-length differences 357 

between current and future conditions. The growing-season length represents the difference 358 

between leaf flushing and leaf senescence. The colour gradient depicts the clinal variation from 359 

low (red) to high (blue) values of bud burst, leaf senescence and growing-season length. Growing-360 

season length is represented in days, and leaf senescence and bud burst in Julian days. Solid colours 361 

represent the predicted geographic area without extrapolation from the climatic area covered by 362 

the trials (TmSON = 7.5 to 10°C), the soft colours represent the extrapolated area (that is, outside 363 

the range of the calibration) predicted by the models. Current climate refers to the average climate 364 

calculated from 2000-2014, and difference in bud burst/leaf senescence/growing season represents 365 

the differences between the model predictions for future (2070, RCP 8.5) and contemporary 366 

climate conditions for bud burst/leaf senescence/growing season.  367 

 368 

4 Discussion 369 

4.1 Provenance differences in bud burst and autumn leaf senescence 370 

The origin of beech provenances is a major determinant of the timing of their leaf spring and 371 

autumn phenology (Table 1), which confirms their genetic differentiation in the control of 372 

phenology (Chmura and Rozkowski 2002; Petkova et al. 2017, Alberto et al. 2013). This 373 

differentiation has often been reported to be stronger for spring phenology than for autumn 374 

phenology (Vitasse et al. 2009; Weih 2009; Firmat et al. 2017; Petkova et al. 2017), which is in 375 

agreement with what we found in our provenances. For instance, in the Slovakian trial the 376 

difference in the date of budburst between colder and warmer provenances was more than 20 days 377 

(Fig. 3 and S1). The duration of autumn leaf senescence is longer than that of leaf flushing in beech 378 



(Fig. 3 and S1, Table S1 and S2) (Gömöry and Paule 2011; Petkova et al. 2017), whereas other 379 

temperate broadleaf species such as Salix spp. and Quercus petraea  have a relatively long period 380 

of leaf-out and relatively abrupt autumn leaf senescence (Weih 2009; Firmat et al. 2017). Although 381 

the dates of spring and autumn leaf phenological stages varied between the two years of our study, 382 

the same response patterns persisted in both years (Fig. 3 and  S1), suggesting a consistent effect 383 

of environmental conditions on the trials (Weih 2009; Friedman et al. 2011; Petkova et al. 2017). 384 

Our results also revealed larger differences among provenances for both BB and LS in the 385 

Slovakian trial than in the German one (Fig. 3 and S1), confirming that, in addition to genetic 386 

effects, the environment plays an important role in the phenological response of beech (Vitasse et 387 

al. 2013; Gárate-Escamilla et al. 2019). 388 

 389 

4.2 Environmental variables defining leaf senescence  390 

Overall, our results support the assertions that (1) high autumn temperatures, both at the site of 391 

population origin and at the planting site, delay LS in beech, and (2) early BB tends to be followed 392 

by early LS (Table 1). The delayed LS promoted by warmer temperatures that we obtained by 393 

manipulating both genetic and site factors using common-garden trials (Fig. 4), is consistent with 394 

previous studies based on in-situ LS records (Delpierre et al. 2009; Vitasse et al. 2011), satellite 395 

data (Yang et al. 2015; Liu et al. 2016a) and climate-controlled chambers (Gunderson et al. 2012; 396 

Fu et al. 2018). While the convergence of these studies is reassuring, the extent to which warmer 397 

temperatures promote delayed LS still remains elusive (Estiarte and Peñuelas 2015): warmer 398 

temperatures accompanied by moderate drought appear to delay LS until a certain threshold (Xie 399 

et al. 2015); but beyond this drought threshold LS is accelerated (Chen et al. 2015; Estiarte and 400 

Peñuelas 2015). The roles of temperature and drought in LS have several broader implications 401 



because the delay in LS induced by warm temperatures is associated with: delayed degradation of 402 

chlorophyll (Fracheboud et al. 2009), maintenance of photosynthetic enzyme activity (Shi et al. 403 

2014), prolonged leaf life span (Liu et al. 2018a), an increased risk of early-autumn frost damage 404 

that might kill leaves before nutrient reabsorption is complete (Estiarte and Peñuelas 2015), 405 

(Hartman et al. 2013) and a possible increase in photosynthetic carbon assimilation related to a 406 

longer growing season (Liu et al. 2016b).  407 

Our findings do not necessarily imply that LS timing in beech only depends on the 408 

temperature of the provenance, because this parameter co-varied with daily insolation, latitude and 409 

precipitation measured at the origin of the provenance (Fig. S2). These factors explained a low 410 

proportion of the overall variance (higher insolation and latitude promoting delayed LS and higher 411 

precipitation promoting earlier LS, although delayed LS might be temperature-related due to cold 412 

temperatures experienced at high latitudes; see Table S3), yet we cannot exclude the possibility 413 

that they may have affected LS timing to some extent. For instance, photoperiod and insolation 414 

can have a strong effect on LS at high latitudes (Liu et al. 2016a, b) where photosynthesis at the 415 

end of the growing season can be increased by high insolation (which implies high 416 

photosynthetically active radiation; Bonan 2002) and by long photoperiods before the autumn 417 

equinox. This benefit feeds back, potentially producing a delay in LS as a result of persistent 418 

chlorophyll retention under sustained high irradiance (Kim et al. 2008).  419 

 420 

4.3 The effect of bud burst on leaf senescence  421 

 422 



The significant carry-over effect of BB on LS timing that we found when considering the climate 423 

of the trial (Table 1; Fig. 4a) is consistent with other recent studies on beech (Fu et al. 2014; 424 

Signarbieux et al. 2017; Chen et al. 2018; Zohner and Renner 2019) and other deciduous trees 425 

across the Northern Hemisphere (Keenan and Richardson 2015; Liu et al. 2016b). The relationship 426 

between BB and LS is complex and various different mechanisms have been proposed to explain 427 

carry-over effects of BB on LS, according to the particular conditions in each study: (i) leaf 428 

structural and morphological traits constrain leaf life span (Reich et al. 1992) and programmed cell 429 

death (Lam 2004; Lim et al. 2007); (ii) once a plant’s carbohydrate storage capacities are saturated, 430 

growth is inhibited (“sink limitation”) and LS is promoted (Fatichi et al. 2013; Keenan and 431 

Richardson 2015; Körner 2015; Signarbieux et al. 2017); (iii) LS is itself affected by the preceding 432 

winter/spring temperature (Fu et al. 2014; Signarbieux et al. 2017; Zohner and Renner 2019); (iv) 433 

early BB could lead to soil water depletion through increased transpiration, resulting in drought 434 

stress and producing earlier LS (Buermann et al. 2013); (v) early BB might increase pest attack 435 

(Jepsen et al. 2011) and increase the probability of spring frost damage (Hufkens et al. 2012), 436 

leading to an earlier LS.  Our use of multiple provenances of different climatic origin enabled us 437 

to isolate the genetic component of these carry-over effects of BB on LS from the temperature 438 

response. We only found this pattern among cold provenances (3.2-5.2 C°) (Fig. S3) and in regions 439 

with high autumn temperature (11.5-12 C°) (Fig. 4a). Yet, we can not rule out the mechanisms 440 

listed above, and more experimental testing is needed to further elucidate the relationship between 441 

BB and LF across large environmental gradients.  442 

The significant interaction effect of BB and the autumn temperature of the provenances on LS is 443 

notable (Table 1), as it suggests that the relationship between BB and LS is moderated by the 444 

temperature at the site of provenance origin in a population-specific manner. Contrarily to the 445 



carry-over effect that we found between delayed LS and late BB when the autumn temperature of 446 

the trial was warm (Fig. 4a), there was an interaction effect between delayed LS and early BB only 447 

when the autumn temperatures of the populations were low (Fig. 4b), suggesting that early BB is 448 

correlated with delayed senescence only when provenances have cold origins (e.g. from the 449 

northern range).  450 

 451 

4.4 Variation in growing season length based on bud burst, leaf senescence and the environment 452 

under present and future climates 453 

Our results, based on two trials located in the core of the distribution range, predict that almost all 454 

the provenancess monitored (except number 3 with an average autumn temperature of 7.4°C) 455 

would extend their GSL by up to 10 days under future climatic conditions with increased autumn 456 

temperatures (11.5-12 C°) (Fig. 5b). However, caution is required when scaling this result up over 457 

large geographical areas with our models based on only two trials. When the models predict 458 

phenology for locations within the climatic range of the trials, only trees in northern regions are 459 

expected to increase their GSL up-to 9 days. This trend can be attributed to the positive relationship 460 

between early BB and delayed LS in cold provenances (Figure 4b), which would extend to north-461 

eastern regions of the species distribution when we extrapolate our results outside the climatic 462 

range of the trials (Fig. 6f).  The GSL of trees in the rest of the range is predicted by our model to 463 

decrease by at least 8 days without extrapolation (Fig. 6). Several recent studies based on field or 464 

satellite data have also predict an increase in GSL (Barnard et al. 2018; Liu et al. 2018b; Gaertner 465 

et al. 2019) at high latitudes, coincident with cold beech populations. Yet Chen et al. (2018), a 466 

study including cold southern beech populations like those considerd here, did not detect increases 467 

in the GSL of southern populations of four temperate European tree species (Quercus robur, F. 468 



sylvatica, Betula pendula and Aesculus hippocastanum) over the last two decades; a study 469 

including cold southern populations of beech like those we consider here. These two trends are 470 

both consistent with our spatial projection of GSL (Fig. 6). The predicted larger GSL differences 471 

in the central and southern range are mostly the result of later leaf senescence predicted for these 472 

regions (Fig. 6), which is likely due to an expected increase in autumn temperatures in these 473 

regions. We should however note that our spatial modelling results, although covering a wide 474 

climatic range, should be interpreted with caution since they are based on empirical data from only 475 

two trials, which can limit their scope.  476 

 477 

5 Conclusions 478 

European beech is characterised by extensive plasticity in many of its life history traits (Gárate-479 

Escamilla et al. 2019) compared to other tree species (Benito Garzón et al. 2019). Yet, strong 480 

genetic control over beech phenology, particularly in spring (Kramer et al. 2017), can constrain 481 

the acclimative response of populations to climatic changes and hence potentially compromise 482 

their future performance. Our analyses provide important insights into the complex relationships 483 

driving spring and autumn phenology across the species range. Although our extrapolations are 484 

only based on two trials, and hence they do not represent the entire climate conditions that 485 

populations encounter across the species range, we found large range-wide differences in GSL (as 486 

inferred from BB and LS) under present climate conditions. However, these differences are likely 487 

to diminish in the future, because the GSL of southern and core populations (i.e. those with a 488 

relatively long current GSL) is predicted to decrease, whilst that of northern and north-eastern 489 

populations (i.e. those with a relatively short current GSL) is predicted to increase. These trends 490 

are largely driven by an increase in temperatures that would modify phenology. Taken together, 491 



our results suggest that northern populations should increase productivity in the coming years, 492 

extending their growing season to take advantage of warmer conditions in the northern part of the 493 

range.  494 
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