57 research outputs found
Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms
Advancing the size and complexity of neural network models leads to an ever
increasing demand for computational resources for their simulation.
Neuromorphic devices offer a number of advantages over conventional computing
architectures, such as high emulation speed or low power consumption, but this
usually comes at the price of reduced configurability and precision. In this
article, we investigate the consequences of several such factors that are
common to neuromorphic devices, more specifically limited hardware resources,
limited parameter configurability and parameter variations. Our final aim is to
provide an array of methods for coping with such inevitable distortion
mechanisms. As a platform for testing our proposed strategies, we use an
executable system specification (ESS) of the BrainScaleS neuromorphic system,
which has been designed as a universal emulation back-end for neuroscientific
modeling. We address the most essential limitations of this device in detail
and study their effects on three prototypical benchmark network models within a
well-defined, systematic workflow. For each network model, we start by defining
quantifiable functionality measures by which we then assess the effects of
typical hardware-specific distortion mechanisms, both in idealized software
simulations and on the ESS. For those effects that cause unacceptable
deviations from the original network dynamics, we suggest generic compensation
mechanisms and demonstrate their effectiveness. Both the suggested workflow and
the investigated compensation mechanisms are largely back-end independent and
do not require additional hardware configurability beyond the one required to
emulate the benchmark networks in the first place. We hereby provide a generic
methodological environment for configurable neuromorphic devices that are
targeted at emulating large-scale, functional neural networks
Spatially Resolved Quantification of Ionomer Degradation in Fuel Cells by Confocal Raman Microscopy
Ionomer membranes are crucial components of many electrochemical devices. In this work, confocal Raman microscopy is employed to characterize Nafion ionomers quantitatively in pristine status and after usage as a proton exchange membrane in a fuel cell. Confocal Raman microscopy allows non-destructive thickness and equivalent weight measurements of Nafion with a 95% confidence interval of ±13 g molâ1 at an equivalent weight of 1000 g molâ1, which is significantly more accurate than previously reported methods. Characterization can be performed at a spatial resolution better than 2 ÎŒm, providing insights into local membrane degradation after fuel cell operation. Membrane thinning to less than 40% of the initial thickness of Nafion NR-211 occurs after a 100 h open circuit voltage hold, accompanied by an anisotropic increase of the equivalent weight from 1035 g molâ1 to an average of 1200 g molâ1. Most pronounced increases are found close to the anode. Further, the characterization of a Nafion XL membrane shows that its microporous reinforcement is represented as increased equivalent weight with local heterogeneities within the membrane. These results show that confocal Raman microscopy is a valuable tool to investigate ionomers that are used as ion exchange membranes in electrochemical devices
Impact of Carbon Support Corrosion on Performance Losses in Polymer Electrolyte Membrane Fuel Cells
Corrosion of the carbon support leads to a severe decay in the performance of PEM fuel cells, mainly due to an increase in the oxygen transport resistance. To investigate the effect of degradation on oxygen transport, we cycled MEAs between 1â1.5Â V and analyzed the electrode structure with FIB-SEM tomography at various ageing states. The tomography results show that the electrode structure changes over 1000 cycles in terms of thickness (7.8 to 6.5Â ÎŒm), porosity (44 to 38%) and diffusivity (9 to 8â
105Â m2sâ1). Limiting current measurements in the wet (hydrogen/air) and dry state (hydrogen pumping) allowed the pressure dependent and pressure independent mass transport resistances to be distinguished and to quantify the impact of product water. The pressure independent resistance increased from 24 to 41Â smâ1. Considering the marginal contribution of the catalyst pore space resistance (3 to 4Â smâ1) it is concluded that the largest portion of the increase (50%) is caused by an increased local mass transport resistance. This is due to a decrease of the electrode roughness factor (282 to 169). The limiting current under wet conditions shows that another 44% could stem from a change in the wetting behavior, while 6% remains unexplained
Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers
Significant reduction of the precious metal catalyst loading is one of the key challenges for the commercialization of proton-exchange membrane water electrolyzers. In this work we combine IrOx nanofibers with a conventional nanoparticle-based IrOx anode catalyst layer. With this hybrid design we can reduce the iridium loading by more than 80% while maintaining performance. In spite of an ultralow overall catalyst loading of 0.2 mg(Ir)/cm(2), a cell with a hybrid layer shows similar performance compared to a state-of-the-art cell with a catalyst loading of 1.2 mg(Ir)/cm(2) and clearly outperforms identically loaded reference cells with pure IrOx nanoparticle and pure nanofiber anodes. The improved performance is attributed to a combination of good electric contact and high porosity of the IrOx nanofibers with high surface area of the IrOx nanoparticles. Besides the improved performance, the hybrid layer also shows better stability in a potential cycling and a 150 h constant current test compared to an identically loaded nanoparticle reference.BMBF, 05KI9VFA, Ultrahochauflösende Untersuchung des Wassertransports in alkalischen Brennstoff- und Elektrolysezellen mittels Neutronenradiographie und âTomographie (NeutroSense
25th annual computational neuroscience meeting: CNS-2016
The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition
Direct membrane deposition was used to produce record platinum catalyst utilization efficiency polymer electrolyte membrane fuel cells. The novel membrane fabrication technique was applied to gas diffusion electrodes with low Pt-loadings of 0.102 and 0.029 mg/cm2. Under oxygen atmosphere and 300 kPaabs total pressure, 88 kW/gPt cathodic catalyst utilization efficiency with a symmetrical Pt-loading of 0.029 mg/cm2 on the anode and cathode side was achieved. This is 2.3 times higher than the Pt-utilization efficiency of a reference fuel cell prepared using a commercial Nafion N-211 membrane and identical catalyst layers, emphasizing that the improvement is purely attributable to the novel membrane fabrication technique. This value represents the highest Pt-utilization efficiency reported in literature. The results strongly motivate the application of employing direct membrane deposition techniques to prepare low resistance polymer electrolyte thin films in order to compensate for kinetic losses introduced when using low catalyst loadings
Spatially Resolved Quantification of Ionomer Degradation in Fuel Cells by Confocal Raman Microscopy
Ionomer membranes are crucial components of many electrochemical devices. In this work, confocal Raman microscopy is employed to characterize Nafion ionomers quantitatively in pristine status and after usage as a proton exchange membrane in a fuel cell. Confocal Raman microscopy allows non-destructive thickness and equivalent weight measurements of Nafion with a 95% confidence interval of ±13 g molâ1 at an equivalent weight of 1000 g molâ1, which is significantly more accurate than previously reported methods. Characterization can be performed at a spatial resolution better than 2 ÎŒm, providing insights into local membrane degradation after fuel cell operation. Membrane thinning to less than 40% of the initial thickness of Nafion NR-211 occurs after a 100 h open circuit voltage hold, accompanied by an anisotropic increase of the equivalent weight from 1035 g molâ1 to an average of 1200 g molâ1. Most pronounced increases are found close to the anode. Further, the characterization of a Nafion XL membrane shows that its microporous reinforcement is represented as increased equivalent weight with local heterogeneities within the membrane. These results show that confocal Raman microscopy is a valuable tool to investigate ionomers that are used as ion exchange membranes in electrochemical devices
The reasons for the high power density of fuel cells fabricated with directly deposited membranes
In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 Όm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement
- âŠ