101 research outputs found

    Federal Preemption of State Trade Secret Law: Existing Theories and a Proposed Solution

    Get PDF

    Federal Preemption of State Trade Secret Law: Existing Theories and a Proposed Solution

    Get PDF

    Entropy on Spin Factors

    Full text link
    Recently it has been demonstrated that the Shannon entropy or the von Neuman entropy are the only entropy functions that generate a local Bregman divergences as long as the state space has rank 3 or higher. In this paper we will study the properties of Bregman divergences for convex bodies of rank 2. The two most important convex bodies of rank 2 can be identified with the bit and the qubit. We demonstrate that if a convex body of rank 2 has a Bregman divergence that satisfies sufficiency then the convex body is spectral and if the Bregman divergence is monotone then the convex body has the shape of a ball. A ball can be represented as the state space of a spin factor, which is the most simple type of Jordan algebra. We also study the existence of recovery maps for Bregman divergences on spin factors. In general the convex bodies of rank 2 appear as faces of state spaces of higher rank. Therefore our results give strong restrictions on which convex bodies could be the state space of a physical system with a well-behaved entropy function.Comment: 30 pages, 6 figure

    Crystal Structure of the PIM2 Kinase in Complex with an Organoruthenium Inhibitor

    Get PDF
    BACKGROUND: The serine/threonine kinase PIM2 is highly expressed in human leukemia and lymphomas and has been shown to positively regulate survival and proliferation of tumor cells. Its diverse ATP site makes PIM2 a promising target for the development of anticancer agents. To date our knowledge of catalytic domain structures of the PIM kinase family is limited to PIM1 which has been extensively studied and which shares about 50% sequence identity with PIM2. PRINCIPAL FINDINGS: Here we determined the crystal structure of PIM2 in complex with an organoruthenium complex (inhibition in sub-nanomolar level). Due to its extraordinary shape complementarity this stable organometallic compound is a highly potent inhibitor of PIM kinases. SIGNIFICANCE: The structure of PIM2 revealed several differences to PIM1 which may be explored further to generate isoform selective inhibitors. It has also demonstrated how an organometallic inhibitor can be adapted to the binding site of protein kinases to generate highly potent inhibitors. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    No effect of auditory–visual spatial disparity on temporal recalibration

    Get PDF
    It is known that the brain adaptively recalibrates itself to small (∼100 ms) auditory–visual (AV) temporal asynchronies so as to maintain intersensory temporal coherence. Here we explored whether spatial disparity between a sound and light affects AV temporal recalibration. Participants were exposed to a train of asynchronous AV stimulus pairs (sound-first or light-first) with sounds and lights emanating from either the same or a different location. Following a short exposure phase, participants were tested on an AV temporal order judgement (TOJ) task. Temporal recalibration manifested itself as a shift of subjective simultaneity in the direction of the adapted audiovisual lag. The shift was equally big when exposure and test stimuli were presented from the same or different locations. These results provide strong evidence for the idea that spatial co-localisation is not a necessary constraint for intersensory pairing to occur

    Unusual optical quiescence of the classical BL Lac object PKS 0735+178 on intranight time-scale

    Get PDF
    We present the result of our extensive intranight optical monitoring of the well-known low-energy peaked BL Lac (LBL) object PKS 0735+178. This long-term follow-up consists of R -band monitoring for a minimum duration of ∼4 hours, on 17 nights spanning 11 years (1998–2008). Using the CCD as an N-star photometer, a detection limit of around 1 per cent was attained for the intranight optical variability (INOV). Remarkably, an INOV amplitude of ≥3 per cent on hour-like time-scale was not observed on any of the 17 nights, even though the likelihood of a typical LBL showing such INOV levels in a single session of >4 hours duration is known to be high (∼50 per cent) . Our observations have thus established a peculiar long-term INOV quiescence of this radio-selected BL Lac object. Moreover, the access to unpublished optical monitoring data of similarly high sensitivity, acquired in another programme, has allowed us to confirm the same anomalous INOV quiescence of this LBL all the way back to 1989, the epoch of its historically largest radio outburst. Here, we present observational evidence revealing the very unusual INOV behaviour of this classical BL Lac object and discuss this briefly in the context of its other known exceptional properties.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74920/1/j.1365-2966.2009.15385.x.pd

    Individual Differences in Sound-in-Noise Perception Are Related to the Strength of Short-Latency Neural Responses to Noise

    Get PDF
    Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40–66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes

    Finding Your Mate at a Cocktail Party: Frequency Separation Promotes Auditory Stream Segregation of Concurrent Voices in Multi-Species Frog Choruses

    Get PDF
    Vocal communication in crowded social environments is a difficult problem for both humans and nonhuman animals. Yet many important social behaviors require listeners to detect, recognize, and discriminate among signals in a complex acoustic milieu comprising the overlapping signals of multiple individuals, often of multiple species. Humans exploit a relatively small number of acoustic cues to segregate overlapping voices (as well as other mixtures of concurrent sounds, like polyphonic music). By comparison, we know little about how nonhuman animals are adapted to solve similar communication problems. One important cue enabling source segregation in human speech communication is that of frequency separation between concurrent voices: differences in frequency promote perceptual segregation of overlapping voices into separate “auditory streams” that can be followed through time. In this study, we show that frequency separation (ΔF) also enables frogs to segregate concurrent vocalizations, such as those routinely encountered in mixed-species breeding choruses. We presented female gray treefrogs (Hyla chrysoscelis) with a pulsed target signal (simulating an attractive conspecific call) in the presence of a continuous stream of distractor pulses (simulating an overlapping, unattractive heterospecific call). When the ΔF between target and distractor was small (e.g., ≤3 semitones), females exhibited low levels of responsiveness, indicating a failure to recognize the target as an attractive signal when the distractor had a similar frequency. Subjects became increasingly more responsive to the target, as indicated by shorter latencies for phonotaxis, as the ΔF between target and distractor increased (e.g., ΔF = 6–12 semitones). These results support the conclusion that gray treefrogs, like humans, can exploit frequency separation as a perceptual cue to segregate concurrent voices in noisy social environments. The ability of these frogs to segregate concurrent voices based on frequency separation may involve ancient hearing mechanisms for source segregation shared with humans and other vertebrates

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore