95 research outputs found

    Preventive interventions in families with parental depression: children’s psychosocial symptoms and prosocial behaviour

    Get PDF
    The aim is to document the effectiveness of a preventive family intervention (Family Talk Intervention, FTI) and a brief psychoeducational discussion with parents (Let’s Talk about the Children, LT) on children’s psychosocial symptoms and prosocial behaviour in families with parental mood disorder, when the interventions are practiced in psychiatric services for adults in the finnish national health service. Patients with mood disorder were invited to participate with their families. Consenting families were randomized to the two intervention groups. The initial sample comprised 119 families and their children aged 8–16. Of these, 109 completed the interventions and the baseline evaluation. Mothers and fathers filled out questionnaires including standardized rating scales for children’s symptoms and prosocial behaviour at baseline and at 4, 10 and 18 months post-intervention. The final sample consisted of parental reports on 149 children with 83 complete data sets. Both interventions were effective in decreasing children’s emotional symptoms, anxiety, and marginally hyperactivity and in improving children’s prosocial behaviour. The FTI was more effective than the LT on emotional symptoms particularly immediately after the intervention, while the effect of the LT emerged after a longer interval. The study supports the effectiveness of both interventions in families with depressed parents. The FTI is applicable in cultural settings other than the USA. Our findings provide support for including preventive child mental health measures as part of psychiatric services for mentally ill parents

    BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis

    Get PDF
    Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a "time-on-task" effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal

    Can Research Assessments Themselves Cause Bias in Behaviour Change Trials? A Systematic Review of Evidence from Solomon 4-Group Studies

    Get PDF
    BACKGROUND: The possible effects of research assessments on participant behaviour have attracted research interest, especially in studies with behavioural interventions and/or outcomes. Assessments may introduce bias in randomised controlled trials by altering receptivity to intervention in experimental groups and differentially impacting on the behaviour of control groups. In a Solomon 4-group design, participants are randomly allocated to one of four arms: (1) assessed experimental group; (2) unassessed experimental group (3) assessed control group; or (4) unassessed control group. This design provides a test of the internal validity of effect sizes obtained in conventional two-group trials by controlling for the effects of baseline assessment, and assessing interactions between the intervention and baseline assessment. The aim of this systematic review is to evaluate evidence from Solomon 4-group studies with behavioural outcomes that baseline research assessments themselves can introduce bias into trials. METHODOLOGY/PRINCIPAL FINDINGS: Electronic databases were searched, supplemented by citation searching. Studies were eligible if they reported appropriately analysed results in peer-reviewed journals and used Solomon 4-group designs in non-laboratory settings with behavioural outcome measures and sample sizes of 20 per group or greater. Ten studies from a range of applied areas were included. There was inconsistent evidence of main effects of assessment, sparse evidence of interactions with behavioural interventions, and a lack of convincing data in relation to the research question for this review. CONCLUSIONS/SIGNIFICANCE: There were too few high quality completed studies to infer conclusively that biases stemming from baseline research assessments do or do not exist. There is, therefore a need for new rigorous Solomon 4-group studies that are purposively designed to evaluate the potential for research assessments to cause bias in behaviour change trials

    The pressure to communicate efficiently continues to shape language use later in life

    Get PDF
    Language use is shaped by a pressure to communicate efficiently, yet the tendency towards redundancy is said to increase in older age. The longstanding assumption is that saying more than is necessary is inefficient and may be driven by age-related decline in inhibition (i.e. the ability to filter out irrelevant information). However, recent work proposes an alternative account of efficiency: In certain contexts, redundancy facilitates communication (e.g., when the colour or size of an object is perceptually salient and its mention aids the listener’s search). A critical question follows: Are older adults indiscriminately redundant, or do they modulate their use of redundant information to facilitate communication? We tested efficiency and cognitive capacities in 200 adults aged 19–82. Irrespective of age, adults with better attention switching skills were redundant in efficient ways, demonstrating that the pressure to communicate efficiently continues to shape language use later in life

    Rule-Guided Executive Control of Response Inhibition: Functional Topography of the Inferior Frontal Cortex

    Get PDF
    The human inferior frontal cortex (IFC) is a large heterogeneous structure with distinct cytoarchitectonic subdivisions and fiber connections. It has been found involved in a wide range of executive control processes from target detection, rule retrieval to response control. Since these processes are often being studied separately, the functional organization of executive control processes within the IFC remains unclear.We conducted an fMRI study to examine the activities of the subdivisions of IFC during the presentation of a task cue (rule retrieval) and during the performance of a stop-signal task (requiring response generation and inhibition) in comparison to a not-stop task (requiring response generation but not inhibition). We utilized a mixed event-related and block design to separate brain activity in correspondence to transient control processes from rule-related and sustained control processes. We found differentiation in control processes within the IFC. Our findings reveal that the bilateral ventral-posterior IFC/anterior insula are more active on both successful and unsuccessful stop trials relative to not-stop trials, suggesting their potential role in the early stage of stopping such as triggering the stop process. Direct countermanding seems to be outside of the IFC. In contrast, the dorsal-posterior IFC/inferior frontal junction (IFJ) showed transient activity in correspondence to the infrequent presentation of the stop signal in both tasks and the left anterior IFC showed differential activity in response to the task cues. The IFC subdivisions also exhibited similar but distinct patterns of functional connectivity during response control.Our findings suggest that executive control processes are distributed across the IFC and that the different subdivisions of IFC may support different control operations through parallel cortico-cortical and cortico-striatal circuits

    Brain Responses to Violet, Blue, and Green Monochromatic Light Exposures in Humans: Prominent Role of Blue Light and the Brainstem

    Get PDF
    BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. METHODOLOGY/PRINCIPAL FINDINGS: We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (10(13)ph/cm(2)/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. CONCLUSION/SIGNIFICANCE: These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function

    Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease.

    Get PDF
    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.This work was funded by the Wellcome trust (103838), Parkinson’s UK, National Institute for Health Research’s Cambridge Biomedical Research Centre and the Medical Research Council (MC_US_A060_0016 and RG62761) and the James F McDonnell Foundation (21st century science initiative on Understanding Human Cognition). The BCNI is supported by a joint award from the Wellcome Trust and Medical Research Council.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/npp.2016.1

    Coherence and recurrency: maintenance, control and integration in working memory

    Get PDF
    Working memory (WM), including a ‘central executive’, is used to guide behavior by internal goals or intentions. We suggest that WM is best described as a set of three interdependent functions which are implemented in the prefrontal cortex (PFC). These functions are maintenance, control of attention and integration. A model for the maintenance function is presented, and we will argue that this model can be extended to incorporate the other functions as well. Maintenance is the capacity to briefly maintain information in the absence of corresponding input, and even in the face of distracting information. We will argue that maintenance is based on recurrent loops between PFC and posterior parts of the brain, and probably within PFC as well. In these loops information can be held temporarily in an active form. We show that a model based on these structural ideas is capable of maintaining a limited number of neural patterns. Not the size, but the coherence of patterns (i.e., a chunking principle based on synchronous firing of interconnected cell assemblies) determines the maintenance capacity. A mechanism that optimizes coherent pattern segregation, also poses a limit to the number of assemblies (about four) that can concurrently reverberate. Top-down attentional control (in perception, action and memory retrieval) can be modelled by the modulation and re-entry of top-down information to posterior parts of the brain. Hierarchically organized modules in PFC create the possibility for information integration. We argue that large-scale multimodal integration of information creates an ‘episodic buffer’, and may even suffice for implementing a central executive

    Effect of apomorphine on cognitive performance and sensorimotor gating in humans

    Get PDF
    Contains fulltext : 88792.pdf (publisher's version ) (Closed access)INTRODUCTION: Dysfunction of brain dopamine systems is involved in various neuropsychiatric disorders. Challenge studies with dopamine receptor agonists have been performed to assess dopamine receptor functioning, classically using the release of growth hormone (GH) from the hindbrain as primary outcome measure. The objective of the current study was to assess dopamine receptor functioning at the forebrain level. METHODS: Fifteen healthy male volunteers received apomorphine sublingually (2 mg), subcutaneously (0.005 mg/kg), and placebo in a balanced, double-blind, cross-over design. Outcome measures were plasma GH levels, performance on an AX continuous performance test, and prepulse inhibition of the acoustic startle. The relation between central outcome measures and apomorphine levels observed in plasma and calculated in the brain was modeled using a two-compartmental pharmacokinetic-pharmacodynamic analysis. RESULTS: After administration of apomorphine, plasma GH increased and performance on the AX continuous performance test deteriorated, particularly in participants with low baseline performance. Apomorphine disrupted prepulse inhibition (PPI) on high-intensity (85 dB) prepulse trials and improved PPI on low intensity (75 dB) prepulse trials, particularly in participants with low baseline PPI. High cognitive performance at baseline was associated with reduced baseline sensorimotor gating. Neurophysiological measures correlated best with calculated brain apomorphine levels after subcutaneous administration. CONCLUSION: The apomorphine challenge test appears a useful tool to assess dopamine receptor functioning at the forebrain level. Modulation of the effect of apomorphine by baseline performance levels may be explained by an inverted U-shape relation between prefrontal dopamine functioning and cognitive performance, and mesolimbic dopamine functioning and sensorimotor gating. Future apomorphine challenge tests preferentially use multiple outcome measures, after subcutaneous administration of apomorphine.1 januari 201
    corecore