14 research outputs found
Uhlmann's geometric phase in presence of isotropic decoherence
Uhlmann's mixed state geometric phase [Rep. Math. Phys. {\bf 24}, 229 (1986)]
is analyzed in the case of a qubit affected by isotropic decoherence treated in
the Markovian approximation. It is demonstrated that this phase decreases
rapidly with increasing decoherence rate and that it is most fragile to weak
decoherence for pure or nearly pure initial states. In the unitary case, we
compare Uhlmann's geometric phase for mixed states with that occurring in
standard Mach-Zehnder interferometry [Phys. Rev. Lett. {\bf 85}, 2845 (2000)]
and show that the latter is more robust to reduction in the length of the Bloch
vector. We also describe how Uhlmann's geometric phase in the present case
could in principle be realized experimentally.Comment: New ref added, refs updated, journal ref adde
Entanglement transfer from dissociated molecules to photons
We introduce and study the concept of a reversible transfer of the quantum
state of two internally-translationally entangled fragments, formed by
molecular dissociation, to a photon pair. The transfer is based on intracavity
stimulated Raman adiabatic passage and it requires a combination of processes
whose principles are well established.Comment: 5 pages, 3 figure
Cognitive mechanisms associated with auditory sensory gating
Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification
Entanglement Properties of the Harmonic Chain
We study the entanglement properties of a closed chain of harmonic oscillators that are coupled via a translationally invariant Hamiltonian, where the coupling acts only on the position operators. We consider the ground state and thermal states of this system, which are Gaussian states. The entanglement properties of these states can be completely characterized analytically when one uses the logarithmic negativity as a measure of entanglement