300 research outputs found
Removal and fate of pesticides in a farm constructed wetland for agricultural drainage water treatment under Mediterranean conditions (Italy)
A non-waterproofed surface flow constructed wetland (SFCW), treating agricultural drainage water in Northern Italy, was investigated to gain information on the potential ability for effective pesticide abatement. A mixture of insecticide imidacloprid, fungicide dimethomorph, and herbicide glyphosate was applied, by simulating a single rain event, into 470-m-long water course of the SFCW meanders. The pesticides were monitored in the wetland water and soil for about 2 months after treatment. Even though the distribution of pesticides in the wetland was not uniform, for each of them, a mean dissipation of 50% of the applied amount was already observed at â€7 days. The dissipation trend in the water phase of the wetland fitted (r2 â„ 0.8166) the first-order model with calculated DT50 of 20.6, 12.0, 5.8, and 36.7 days for imidacloprid, dimethomorph, glyphosate, and the glyphosate metabolite AMPA, respectively. The pesticide behavior was interpreted based on the chemical and physical characteristics of both the substances and the water-soil system. Despite the fast abatement of glyphosate, traces were detected in the water until the end of the trial. The formation of soluble 1:1 complex between glyphosate and calcium, the most representative cation in the wetland water, was highlighted by infrared analyses. Such a soluble complex was supposed to keep traces of the herbicide in solution
Zeolite structures loading with an anticancer compound as drug delivery systems
The authors are thankful to Dr. A. S. Azevedo for collecting the powder diffraction data.Two different structures of zeolites, faujasite (FAU) and Linde type A (LTA), were studied to investigate their suitability for drug delivery systems (DDS). The zeolites in the sodium form (NaY and NaA) were used as hosts for encapsulation of α-cyano-4- hydroxycinnamic acid (CHC). CHC, an experimental anticancer drug, was encapsulated in both zeolites by diffusion in liquid phase. These new drug delivery systems, CHC@zeolite, were characterized by spectroscopic techniques (FTIR, 1H NMR, 13C and 27Al solidstate MAS NMR, and UVâvis), chemical analysis, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of the zeolites and CHC@zeolite drug deliveries on HCT-15 human colon carcinoma cell line viability was evaluated. Both zeolites alone revealed no toxicity to HCT-15 cancer cells. Importantly, CHC@zeolite exhibit an inhibition of cell viability up to 585-fold, when compared to the non-encapsulated drug. These results indicate the potential of the zeolites for drug loading and delivery into cancer cells to induce cell deathO.M. and R.A. are recipients of fellowships (SFRH/BD/36463/2007, SFRH/BI/51118/2010) from FundaçaÌo para a CieÌncia e a Tecnologia (FCT, Portugal). This work was supported by the FCT projects refs PEst-C/ QUI/UI0686/2011, PEst-C/CTM/LA0011/2011, and PTDC/ SAU-FCF/104347/2008, under the scope of âPrograma Operacional TemaÌtico Factores de Competitividadeâ (COMPETE) of âQuadro ComunitaÌrio de Apoio IIIâ and cofinanced by Fundo ComunitaÌrio Europeu FEDER, and the Centre of Chemistry and Life and Health Sciences Research Institute (University of Minho, Portugal)
Tissue Specific Profiling of Females of Schistosoma japonicum by Integrated Laser Microdissection Microscopy and Microarray Analysis
Schistosomes are parasitic worms responsible for important human diseases in tropical and developing nations. There is urgent need to develop new drugs and vaccines to augment current treatments for this disease. In recent years, concerted efforts by many laboratories have led to extensive genetic sequencing of the parasites, and the publication of genome sequence for two agents of schistosomiasis appears imminent. This genetic information has revealed many molecules expressed by the schistosome parasites for which no functional information is available. This lack of information extends to ignorance of where in the complex multicellular schistosome parasites the genes are expressed. We integrated two molecular and cellular techniques to address these knowledge gaps. We used laser microdissection microscopy to dissect small but highly important tissues involved in nutrition and reproduction from sections of female Schistosoma japonicum. From these dissected tissues we then used a broad molecular biology method to identify the multiple genes active in these tissues. Our approach has allowed us to formulate the basis of a âgene atlasâ for schistosome parasites, defining the expression repertoire of specific tissues. The better understanding of the roles of tissues in parasite biology, especially in development, reproduction and interactions with its human hosts, should promote future investigations into pathogenesis and control of these significant parasites
Knowledge and health care resource allocation: CME/CPD course guidelines-based efficacy.
BACKGROUND: Most health care systems consider continuing medical education a potential tool to improve quality of care and reduce disease management costs. Its efficacy in general practitioners needs to be further explored.
OBJECTIVE: This study assesses the effectiveness of a one-year continuing medical education/continuing professional development course for general practitioners, regarding the improvement in knowledge of ARIA and GINA guidelines and compliance with them in asthma management.
METHODS: Sixty general practitioners, covering 68,146 inhabitants, were randomly allocated to continuing medical education/continuing professional development (five residential events +four short distance-learning refresher courses over one year) or no training. Participants completed a questionnaire after each continuing medical education event; key questions were repeated at least twice. The Local Health Unit prescription database was used to verify prescription habits (diagnostic investigations and pharmacological therapy) and hospitalizations over one year before and after training.
RESULTS: Fourteen general practitioners (46.7%) reached the cut-off of 50% attendance of the training courses. Knowledge improved significantly after training (p < 0.001, correct answers to key questions +13%). Training resulted in pharmaceutical cost containment (trained general practitioners +0.5% vs. controls +18.8%) and greater attention to diagnosis and monitoring (increase in spirometry +63.4%, p < 0.01).
CONCLUSION: This study revealed an encouraging impact of educational events on improvement in general practitioner knowledge of guidelines and daily practice behavioral changes. Long-term studies of large populations are required to assess the effectiveness of education on the behavior of physicians in asthma management, and to establish the best format for educational events
RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening
RNA interference (RNAi) is a technique to selectively suppress mRNA of individual genes and, consequently, their cognate proteins. RNAi using double-stranded (ds) RNA has been used to interrogate the function of mainly single genes in the flatworm, Schistosoma mansoni, one of a number of schistosome species causing schistosomiasis. In consideration of large-scale screens to identify candidate drug targets, we examined the selectivity and sensitivity (the degree of suppression) of RNAi for 11 genes produced in different tissues of the parasite: the gut, tegument (surface) and otherwise. We used the schistosomulum stage prepared from infective cercariae larvae which are accessible in large numbers and adaptable to automated screening platforms. We found that RNAi suppresses transcripts selectively, however, the sensitivity of suppression varies (40%â>75%). No obvious changes in the parasite occurred post-RNAi, including after targeting the mRNA of genes that had been computationally predicted to be essential for survival. Additionally, we defined operational parameters to facilitate large-scale RNAi, including choice of culture medium, transfection strategy to deliver dsRNA, dose- and time-dependency, and dosing limits. Finally, using fluorescent probes, we show that the developing gut allows rapid entrance of dsRNA into the parasite to initiate RNAi
A Cytochrome b561 with Ferric Reductase Activity from the Parasitic Blood Fluke, Schistosoma japonicum
Parasites acquire their food from their hosts, either by feeding directly on tissues of the host, or by competing for ingested food. Adult schistosomes live within the vasculature of humans and rely on the blood cells and plasma they ingest and dissolved solutes they derive across their body surface, the tegument, for their nutrition. Schistosomes require host trace elements, notably iron, which is used as a co-factor in many biological reactions. Iron is especially important for schistosomes, for it has a significant role in egg formation and embryogenesis. In human tissues, iron predominates in the trivalent (ferric) form; however, it is the divalent (ferrous) form that is used as an essential co-factor for multiple biomolecules and enzymes. In order to be acquired from the host environment, the valency of iron must be modified to render it suitable for transport across the parasite membrane. This paper describes the molecular characterisation of a schistosome molecule that is crucial for bringing about this change in iron. Schistosoma japonicum Cytb561 is the first ferric reductase characterised in any parasitic helminth and emphasises the importance of iron, and other divalent cations, in these organisms
Brain hemodynamic intermediate phenotype links Vitamin B12 to cognitive profile of healthy and mild cognitive impaired subjects
Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value < 0 05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0 0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype.Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value < 0 05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0 0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype
MyoMiner: explore gene co-expression in normal and pathological muscle
International audienceBackground: High-throughput transcriptomics measures mRNA levels for thousands of genes in a biological sample. Most gene expression studies aim to identify genes that are differentially expressed between different biological conditions, such as between healthy and diseased states. However, these data can also be used to identify genes that are co-expressed within a biological condition. Gene co-expression is used in a guilt-by-association approach to prioritize candidate genes that could be involved in disease, and to gain insights into the functions of genes, protein relations, and signaling pathways. Most existing gene co-expression databases are generic, amalgamating data for a given organism regardless of tissue-type.Methods: To study muscle-specific gene co-expression in both normal and pathological states, publicly available gene expression data were acquired for 2376 mouse and 2228 human striated muscle samples, and separated into 142 categories based on species (human or mouse), tissue origin, age, gender, anatomic part, and experimental condition. Co-expression values were calculated for each category to create the MyoMiner database.Results: Within each category, users can select a gene of interest, and the MyoMiner web interface will return all correlated genes. For each co-expressed gene pair, adjusted p-value and confidence intervals are provided as measures of expression correlation strength. A standardized expression-level scatterplot is available for every gene pair r-value. MyoMiner has two extra functions: (a) a network interface for creating a 2-shell correlation network, based either on the most highly correlated genes or from a list of genes provided by the user with the option to include linked genes from the database and (b) a comparison tool from which the users can test whether any two correlation coefficients from different conditions are significantly different.Conclusions: These co-expression analyses will help investigators to delineate the tissue-, cell-, and pathology-specific elements of muscle protein interactions, cell signaling and gene regulation. Changes in co-expression between pathologic and healthy tissue may suggest new disease mechanisms and help define novel therapeutic targets. Thus, MyoMiner is a powerful muscle-specific database for the discovery of genes that are associated with related functions based on their co-expression. MyoMiner is freely available at https://www.sys-myo.com/myominer
Hippocampal cerebral blood flow depends on systemic endothelial function in individuals with mild cognitive impairment : the Train the Brain-Mind the vessel study
Background: Dementia has been recently viewed as a predominantly vascular disorder. Indeed, reduced brain NO availability causes increased ÎČ-amyloid deposition by several mechanisms, including hypoperfusion.
Purpose: To investigate whether a relationship exists between cerebral blood flow in the hippocampal and parahippocampal regions (crucial areas for memory and processing of non-verbal / spatial information) and systemic endothelial function in individuals with mild cognitive impairment (MCI), a subclinical condition predisposing to dementia.
Methods: Cerebral blood flow in the hippocampus and parahippocampus (CBF-hipp and CBF-parahipp) were evaluated by magnetic resonance imaging (arterial spin labeling, GE HDxt 1.5 T Signa Neuro-optimized System). Systemic endothelial function was evaluated by flow-mediated dilation (FMD) in the brachial artery.
Results: Complete data about CBF and FMD at enrollment were available for 66 individuals with MCI and 32 without (non-MCI). The two groups were matched for age (75±5 vs 74±5 years respectively, p=0.22), sex (men 45,5% vs 50%, p=0.18) and mean BP (96±10 vs 97±9 mmHg, p=0.41). FMD was significantly lower in MCI than in non-MCI (2.93±2.18 vs 3.74±2.03%, p=0.02); CBF-hipp (64.3±9.43 vs 69.5±7.03 ml/100 gr/min), p=0.002) and CBF-parahipp (66.3±8.02 vs 70.0±8.12 ml/100 gr/min, p=0.002) were significantly lower in MCI as well. Among MCI, FMD was significantly correlated with CBF-parahipp (r=0.26, p=0.03) and CBF-hipp (r=0.32, p=0.009). In a multiple regression model, including age, sex, mean BP, BMI, brachial artery diameter as confounders, FMD remained an independent determinant of CBF-parahipp (beta=0.93, r2=0.063, p=0.04). A similar finding was obtained with CBF-hipp (beta=1.31, r2=0.089, p=0.01). Nor CBF-parahipp (r=-0.13, p=0.48) neither CBF-hipp (r=0.05, p=0.80) were correlated with FMD in non-MCI group.
Conclusions: An independent association between hippocampal and parahippocampal CBF and systemic endothelial function is present in individuals with MCI.
Acknowledgement/Funding: The study was funded by a grant from Fondazione Cassa di Risparmio di Pis
Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the Train the Brain study
Age-related cognitive impairment and dementia are an increasing societal burden. Epidemiological studies indicate that lifestyle factors, e.g. physical, cognitive and social activities, correlate with reduced dementia risk; moreover, positive effects on cognition of physical/cognitive training have been found in cognitively unimpaired elders. Less is known about effectiveness and action mechanisms of physical/cognitive training in elders already suffering from Mild Cognitive Impairment (MCI), a population at high risk for dementia. We assessed in 113 MCI subjects aged 65-89 years, the efficacy of combined physical-cognitive training on cognitive decline, Gray Matter (GM) volume loss and Cerebral Blood Flow (CBF) in hippocampus and parahippocampal areas, and on brain-blood-oxygenation-level-dependent (BOLD) activity elicited by a cognitive task, measured by ADAS-Cog scale, Magnetic Resonance Imaging (MRI), Arterial Spin Labeling (ASL) and fMRI, respectively, before and after 7 months of training vs. usual life. Cognitive status significantly decreased in MCI-no training and significantly increased in MCI-training subjects; training increased parahippocampal CBF, but no effect on GM volume loss was evident; BOLD activity increase, indicative of neural efficiency decline, was found only in MCI-no training subjects. These results show that a non pharmacological, multicomponent intervention improves cognitive status and indicators of brain health in MCI subjects
- âŠ