130 research outputs found
C-reactive protein lowers the serum level of IL-17, but not TNF-α, and decreases the incidence of collagen-induced arthritis in mice
The biosynthesis of C-reactive protein (CRP) in the liver is increased in inflammatory diseases including rheumatoid arthritis. Previously published data suggest a protective function of CRP in arthritis; however, the mechanism of action of CRP remains undefined. The aim of this study was to evaluate the effects of human CRP on the development of collagen-induced arthritis (CIA) in mice which is an animal model of autoimmune inflammatory arthritis. Two CRP species were employed: wild-type CRP which binds to aggregated IgG at acidic pH and a CRP mutant which binds to aggregated IgG at physiological pH. Ten CRP injections were given on alternate days during the development of CIA. Both wild-type and mutant CRP reduced the incidence of CIA, that is, reduced the number of mice developing CIA; however, CRP did not affect the severity of the disease in arthritic mice. The serum levels of IL-17, IL-6, TNF-α, IL-10, IL-2 and IL-1β were measured: both wild-type and mutant CRP decreased the level of IL-17 and IL-6 but not of TNF-α, IL-10, IL-2 and IL-1β. These data suggest that CRP recognizes and binds to immune complexes, although it was not clear whether CRP functioned in its native pentameric or in its structurally altered pentameric form in the CIA model. Consequently, ligand-complexed CRP, through an as-yet undefined mechanism, directly or indirectly, inhibits the production of IL-17 and eventually protects against the initiation of the development of arthritis. The data also suggest that IL-17, not TNF-α, is critical for the development of autoimmune inflammatory arthritis
Centerscope
Centerscope, formerly Scope, was published by the Boston University Medical Center "to communicate the concern of the Medical Center for the development and maintenance of improved health care in contemporary society.
Discovery of an Extraordinarily Massive Cluster of Red Supergiants
We report the discovery of an extraordinarily massive young cluster of stars
in the Galaxy, having an inferred total initial cluster mass comparable to the
most massive young clusters in the Galaxy. Using {\it IRMOS}, {\it 2MASS}, and
{\it Spitzer} observations, we conclude that there are 14 red supergiants in
the cluster, compared with five, in what was previously thought to be the
richest Galactic cluster of such stars. We infer spectral types from
near-infrared spectra that reveal deep CO bandhead absorption that can only be
fit by red supergiants. We identify a gap of {\it K}4
magnitudes between the stars and the bulk of the other stars in the region that
can only be fit by models if the brightest stars in the cluster are red
supergiants. We estimate a distance of 5.8~\kpc to the cluster by associating
an OH maser with the envelope of one of the stars. We also identify a
``yellow'' supergiant of G6~I type in the cluster. Assuming a Salpeter IMF, we
infer an initial cluster mass of 20,000 to 40,000~\Msun for cluster ages of
7-12~\Myr. Continuing with these assumptions, we find 80% of the intial mass
and 99% of the number of stars remain at the present time. We associate the
cluster with an x-ray source (detected by {\it ASCA} and {\it Einstein}), a
recently discovered very high energy -ray source (detected by {\it
INTEGRAL} and {\it HESS}), and several non-thermal radio sources, finding that
these objects are likely related to recent supernovae in the cluster. In
particular, we claim that the cluster has produced at least one recent
supernova remnant with properties similar to the Crab nebula. It is not
unlikely to find such a source in this cluster, given our estimated supernova
rate of one per 40,000 to 80,000~{\it yr}.Comment: ApJ, accepte
Centers for Oceans and Human Health : a unified approach to the challenge of harmful algal blooms
© 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License
The definitive version was published in Environmental Health 7 (2008): S2, doi:10.1186/1476-069X-7-S2-S2.Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics.
In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine.
Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute toxicity, but almost nothing is known about the effects of chronic, subacute toxin exposure. The OHH initiatives have brought scientists together to work collectively on HAB issues, within and across regions. The successes that have been achieved highlight the value of collaboration and cooperation across disciplines, if we are to continue to advance our understanding of HABs and their relationship to human health.This work was funded through grants from the NSF/NIEHS Centers for
Oceans and Human Health, NIEHS P50 ES012742 and NSF OCE-043072
(DLE and DMA), NSF OCE04-32479 and NIEHS P50 ES012740 (PB and
RRB), NSF OCE-0432368 and NIEHS P50 ES12736 (LEB), NIEHS P50
ES012762 and NSF OCE-0434087 (RCS, KAL, MSP, MLW, and KAH).
Additional support was provided by the ECOHAB Grant program NSF
Grant OCE-9808173 and NOAA Grant NA96OP0099 (DMA), NOAA
OHHI NA04OAR4600206 (RRB) and Washington State Sea Grant
NA16RG1044 (RCS). KAL and VLT were supported in part by the West
Coast Center for Oceans and Human Health (WCCOHH) as part of the
NOAA Oceans and Human Health Initiative
Massive stars in the giant molecular cloud G23.3−0.3 and W41
Context. Young massive stars and stellar clusters continuously form in the Galactic disk, generating new Hii regions within their natal giant molecular clouds and subsequently enriching the interstellar medium via their winds and supernovae.Aims. Massive stars are among the brightest infrared stars in such regions; their identification permits the characterisation of the star formation history of the associated cloud as well as constraining the location of stellar aggregates and hence their occurrence as a function of global environment.Methods. We present a stellar spectroscopic survey in the direction of the giant molecular cloud G23.3−0.3. This complex is located at a distance of ~4–5 kpc, and consists of several Hii regions and supernova remnants.Results. We discovered 11 OfK+ stars, one candidate luminous blue variable, several OB stars, and candidate red supergiants. Stars with K-band extinction from ~1.3–1.9 mag appear to be associated with the GMC G23.3−0.3; O and B-types satisfying this criterion have spectrophotometric distances consistent with that of the giant molecular cloud. Combining near-IR spectroscopic and photometric data allowed us to characterize the multiple sites of star formation within it. The O-type stars have masses from ~25–45 M⊙, and ages of 5–8 Myr. Two new red supergiants were detected with interstellar extinction typical of the cloud; along with the two RSGs within the cluster GLIMPSE9, they trace an older burst with an age of 20–30 Myr. Massive stars were also detected in the core of three supernova remnants – W41, G22.7−0.2, and G22.7583−0.4917.Conclusions. A large population of massive stars appears associated with the GMC G23.3−0.3, with the properties inferred for them indicative of an extended history of stars formation
Near-infrared spectra of Galactic stellar clusters detected on Spitzer/GLIMPSE images
We present near-infrared spectroscopic observations of massive stars in three
stellar clusters located in the direction of the inner Galaxy. One of them, the
Quartet, is a new discovery while the other two were previously reported as
candidate clusters identified on mid-infrared Spitzer images (GLIMPSE20 and
GLIMPSE13). Using medium-resolution (R=900-1320) H and K spectroscopy, we
firmly establish the nature of the brightest stars in these clusters, yielding
new identifications of an early WC and two Ofpe/WN9 stars in the Quartet and an
early WC star in GLIMPSE20. We combine this information with the available
photometric measurements from 2MASS, to estimate cluster masses, ages, and
distances. The presence of several massive stars places the Quartet and
GLIMPSE20 among the small sample of known Galactic stellar clusters with masses
of a few 10^3 Msun, and ages from 3 to 8 Myr. We estimate a distance of about
3.5 kpc for Glimpse 20, and 6.0 kpc for Quartet. The large number of giant
stars identified in GLIMPSE13 indicates that it is another massive (~ 6500
Msun) cluster, but older, with an age between 30 and 100 Myr, at a distance of
about 3 kpc.Comment: aastex macro, 21 pages, 15 figures. ApJ, accepte
Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum
Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
Effect of clinical signs, endocrinopathies, timing of surgery, hyperlipidemia, and hyperbilirubinemia on outcome in dogs with gallbladder mucocele
Gallbladder mucocele (GBM) is a common extra-hepatic biliary syndrome in dogs with death rates ranging from 7 to 45%. Therefore, the aim of this study was to identify the association of survival with variables that could be utilized to improve clinical decisions. A total of 1194 dogs with a gross and histopathological diagnosis of GBM were included from 41 veterinary referral hospitals in this retrospective study.
Dogs with GBM that demonstrated abnormal clinical signs had significantly greater odds of death than subclinical dogs in a univariable analysis (OR, 4.2; 95% CI, 2.14–8.23; P < 0.001). The multivariable model indicated that categorical variables including owner recognition of jaundice (OR, 2.12; 95% CI, 1.19–3.77; P = 0.011), concurrent hyperadrenocorticism (OR 1.94; 95% CI, 1.08–3.47; P = 0.026), and Pomeranian breed (OR, 2.46; 95% CI 1.10–5.50; P = 0.029) were associated with increased odds of death, and vomiting was associated with decreased odds of death (OR, 0.48; 95% CI, 0.30–0.72; P = 0.001). Continuous variables in the multivariable model, total serum/plasma bilirubin concentration (OR, 1.03; 95% CI, 1.01–1.04; P < 0.001) and age (OR, 1.17; 95% CI, 1.08–1.26; P < 0.001), were associated with increased odds of death. The clinical utility of total serum/plasma bilirubin concentration as a biomarker to predict death was poor with a sensitivity of 0.61 (95% CI, 0.54–0.69) and a specificity of 0.63 (95% CI, 0.59–0.66). This study identified several prognostic variables in dogs with GBM including total serum/plasma bilirubin concentration, age, clinical signs, concurrent hyperadrenocorticism, and the Pomeranian breed. The presence of hypothyroidism or diabetes mellitus did not impact outcome in this study.Supplemental Table S1. Number of dogs included from each institution and years reviewed.Supplemental Table S2. Included breeds.Supplemental Table S3. Distribution of various reasons given for performing cholecystectomy in the 179 subclinical dogs with gallbladder mucocele (GBM).Supplemental Table S4. Distribution of clinical signs associated with systemic illness in 982 dogs with gallbladder mucocele.Supplemental Table S5. Distribution of reasons for death in-hospital (i.e. euthanized and died) in 179 dogs with gallbladder mucocele that underwent cholecystectomy.http://www.elsevier.com/locate/tvjlhj2020Companion Animal Clinical Studie
- …