1,235 research outputs found

    Reach-to-Grasp Actions Under Direct and Indirect Viewing Conditions

    Get PDF
    The purpose of this study was to determine whether indirectly viewing an object through a mirror causes reach-to-grasp kinematics to differ from those performed under normal conditions, when participants directly observe the object to be grasped. Participants, in a supine position, reached for objects placed on a presentation platform (workspace) resting above their thighs. In the indirect viewing condition, a two-mirror viewing system was placed above the head that allowed participants to view the workspace. In the direct viewing condition, participants\u27 heads were elevated and tilted forward such that they could directly view the workspace. Three infrared markers were attached to participants\u27 right index fingertip, the tip of the right thumb and the knuckle of the right index-finger. Hand movements were captured using an OPTOTRAK 3020 camera system and kinematics were calculated offline following the experiment. It was found that reaches made under the indirect viewing condition were performed at a slower speed, and overall took longer than reaches made under the direct viewing condition. Hand shaping was effected by viewing condition and object size interaction. The results from this study reveal that reach-to-grasp movements performed under different viewing conditions are quantifiably different and may suggest that different neural substrates and/or different computational loads are present during these two viewing conditions. These results suggest that there may be experimental confounds in several of the previously published reach-to-grasp neuroimaging studies, specifically those that have used optical manipulations to view the hand and workspace within the fMRI scanning environment

    An electric-field representation of the harmonic XY model

    Get PDF
    The two-dimensional harmonic XY (HXY) model is a spin model in which the classical spins interact via a piecewise parabolic potential. We argue that the HXY model should be regarded as the canonical classical lattice spin model of phase fluctuations in two-dimensional condensates, as it is the simplest model that guarantees the modular symmetry of the experimental systems. Here we formulate a lattice electric-field representation of the HXY model and contrast this with an analogous representation of the Villain model and the two-dimensional Coulomb gas with a purely rotational auxiliary field. We find that the HXY model is a spin-model analogue of a lattice electric-field model of the Coulomb gas with an auxiliary field, but with a temperature-dependent vacuum (electric) permittivity that encodes the coupling of the spin vortices to their background spin-wave medium. The spin vortices map to the Coulomb charges, while the spin-wave fluctuations correspond to auxiliary-field fluctuations. The coupling explains the striking differences in the high-temperature asymptotes of the specific heats of the HXY model and the Coulomb gas with an auxiliary field. Our results elucidate the propagation of effective long-range interactions throughout the HXY model (whose interactions are purely local) by the lattice electric fields. They also imply that global spin-twist excitations (topological-sector fluctuations) generated by local spin dynamics are ergodically excluded in the low-temperature phase. We discuss the relevance of these results to condensate physics.Comment: 13 pages, 10 figure

    Topological-sector fluctuations and ergodicity breaking at the Berezinskii-Kosterlitz-Thouless transition

    Get PDF
    The Berezinskii-Kosterlitz-Thouless (BKT) phase transition drives the unbinding of topological defects in many two-dimensional systems. In the two-dimensional Coulomb gas, it corresponds to an insulator-conductor transition driven by charge deconfinement. We investigate the global topological properties of this transition, both analytically and by numerical simulation, using a lattice-field description of the two-dimensional Coulomb gas on a torus. The BKT transition is shown to be an ergodicity breaking between the topological sectors of the electric field, which implies a definition of topological order in terms of broken ergodicity. The breakdown of local topological order at the BKT transition leads to the excitation of global topological defects in the electric field, corresponding to different topological sectors. The quantized nature of these classical excitations, and their strict suppression by ergodicity breaking in the low-temperature phase, afford striking global signatures of topological-sector fluctuations at the BKT transition. We discuss how these signatures could be detected in experiments on, for example, magnetic films and cold-atom systems.Comment: 11 pages, 6 figure

    Crystal Shape-Dependent Magnetic Susceptibility and Curie Law Crossover in the Spin Ices Dy2Ti2O7 and Ho2Ti2O7

    Full text link
    We present an experimental determination of the isothermal magnetic susceptibility of the spin ice materials Dy2Ti2O7 and Ho2Ti2O7 in the temperature range 1.8-300 K. The use of spherical crystals has allowed the accurate correction for demagnetizing fields and allowed the true bulk isothermal susceptibility X_T(T) to be estimated. This has been compared to a theoretical expression based on a Husimi tree approximation to the spin ice model. Agreement between experiment and theory is excellent at T > 10 K, but systematic deviations occur below that temperature. Our results largely resolve an apparent disagreement between neutron scattering and bulk measurements that has been previously noted. They also show that the use of non-spherical crystals in magnetization studies of spin ice may introduce very significant systematic errors, although we note some interesting - and possibly new - systematics concerning the demagnetizing factor in cuboidal samples. Finally, our results show how experimental susceptibility measurements on spin ices may be used to extract the characteristic energy scale of the system and the corresponding chemical potential for emergent magnetic monopoles.Comment: 11 pages, 3 figures 1 table. Manuscript submitte

    Non-Gaussian Resistance Noise near Electrical Breakdown in Granular Materials

    Full text link
    The distribution of resistance fluctuations of conducting thin films with granular structure near electrical breakdown is studied by numerical simulations. The film is modeled as a resistor network in a steady state determined by the competition between two biased processes, breaking and recovery. Systems of different sizes and with different levels of internal disorder are considered. Sharp deviations from a Gaussian distribution are found near breakdown and the effect increases with the degree of internal disorder. However, we show that in general this non-Gaussianity is related to the finite size of the system and vanishes in the large size limit. Nevertheless, near the critical point of the conductor-insulator transition, deviations from Gaussianity persist when the size is increased and the distribution of resistance fluctuations is well fitted by the universal Bramwell-Holdsworth-Pinton distribution.Comment: 8 pages, 6 figures; accepted for publication on Physica

    Phase order in superfluid helium films

    Get PDF
    Classic experimental data on helium films are transformed to estimate a finite-size phase order parameter that measures the thermal degradation of the condensate fraction in the two-dimensional superfluid. The order parameter is found to evolve thermally with the exponent β=3π2/128\beta = 3 \pi^2/128, a characteristic, in analogous magnetic systems, of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Universal scaling near the BKT fixed point generates a collapse of experimental data on helium and ferromagnetic films, and implies new experiments and theoretical protocols to explore the phase order. These results give a striking example of experimental finite-size scaling in a critical system that is broadly relevant to two-dimensional Bose fluids.Comment: 6 pages, 2 figure

    Universal Magnetic Fluctuations with a Field Induced Length Scale

    Full text link
    We calculate the probability density function for the order parameter fluctuations in the low temperature phase of the 2D-XY model of magnetism near the line of critical points. A finite correlation length, \xi, is introduced with a small magnetic field, h, and an accurate expression for \xi(h) is developed by treating non-linear contributions to the field energy using a Hartree approximation. We find analytically a series of universal non-Gaussian distributions with a finite size scaling form and present a Gumbel-like function that gives the PDF to an excellent approximation. We propose the Gumbel exponent, a(h), as an indirect measure of the length scale of correlations in a wide range of complex systems.Comment: 7 pages, 4 figures, 1 table. To appear in Phys. Rev.

    Onsager's Wien Effect on a Lattice

    Full text link
    The Second Wien Effect describes the non-linear, non-equilibrium response of a weak electrolyte in moderate to high electric fields. Onsager's 1934 electrodiffusion theory along with various extensions has been invoked for systems and phenomena as diverse as solar cells, surfactant solutions, water splitting reactions, dielectric liquids, electrohydrodynamic flow, water and ice physics, electrical double layers, non-Ohmic conduction in semiconductors and oxide glasses, biochemical nerve response and magnetic monopoles in spin ice. In view of this technological importance and the experimental ubiquity of such phenomena, it is surprising that Onsager's Wien effect has never been studied by numerical simulation. Here we present simulations of a lattice Coulomb gas, treating the widely applicable case of a double equilibrium for free charge generation. We obtain detailed characterisation of the Wien effect and confirm the accuracy of the analytical theories as regards the field evolution of the free charge density and correlations. We also demonstrate that simulations can uncover further corrections, such as how the field-dependent conductivity may be influenced by details of microscopic dynamics. We conclude that lattice simulation offers a powerful means by which to investigate system-specific corrections to the Onsager theory, and thus constitutes a valuable tool for detailed theoretical studies of the numerous practical applications of the Second Wien Effect.Comment: Main: 12 pages, 4 figures. Supplementary Information: 7 page

    Characterising anomalous transport in accretion disks from X-ray observations

    Get PDF
    Whilst direct observations of internal transport in accretion disks are not yet possible, measurement of the energy emitted from accreting astrophysical systems can provide useful information on the physical mechanisms at work. Here we examine the unbroken multi-year time variation of the total X-ray flux from three sources: Cygnus X-1 , the microquasar GRS 1915+105 , and for comparison the nonaccreting Crab nebula. To complement previous analyses, we demonstrate that the application of advanced statistical methods to these observational time-series reveals important contrasts in the nature and scaling properties of the transport processes operating within these sources. We find the Crab signal resembles Gaussian noise; the Cygnus X-1 signal is a leptokurtic random walk whose self-similar properties persist on timescales up to three years; and the GRS 1915+105 signal is similar to that from Cygnus X-1, but with self-similarity extending possibly to only a few days. This evidence of self-similarity provides a robust quantitative characterisation of anomalous transport occuring within the systems
    • …
    corecore