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The Berezinskii-Kosterlitz-Thouless (BKT) phase transition drives the unbinding of topological
defects in many two-dimensional systems. In the two-dimensional Coulomb gas, it corresponds to an
insulator-conductor transition driven by charge deconfinement. We investigate the global topological
properties of this transition, both analytically and by numerical simulation, using a lattice-field
description of the two-dimensional Coulomb gas on a torus. The BKT transition is shown to be an
ergodicity breaking between the topological sectors of the electric field, which implies a definition of
topological order in terms of broken ergodicity. The breakdown of local topological order at the BKT
transition leads to the excitation of global topological defects in the electric field, corresponding to
different topological sectors. The quantized nature of these classical excitations, and their strict
suppression by ergodicity breaking in the low-temperature phase, afford striking global signatures
of topological-sector fluctuations at the BKT transition. We discuss how these signatures could be
detected in experiments on, for example, magnetic films and cold-atom systems.

I. INTRODUCTION

Topological physics [1] emerges in many condensed-
matter systems, including superfluids and super-
conductors [2–4], topological insulators [5], exciton-
polariton condensates [6], and magnetic textures such
as skyrmions [7]. Among two-dimensional systems, a
prototypical application of topology concerns the quan-
tum Hall effect in the two-dimensional electron gas [8–
10], while many other examples relate to the physics of
topological defects identified by Berezinskii, Kosterlitz
and Thouless (BKT) [11–13]. These include Josephson
junction arrays [14–17], films composed of Bose-Einstein
condensates [18, 19], superfluid films [20], liquid-crystal
and polymer films [21], superinsulators [22, 23], and mag-
netic films and layers [24–27]. In such systems, the BKT
phase transition drives the thermal dissociation of bound
pairs of local topological-defects [11–13, 28]. The idea of
a topological defect (defined in the footnote [29]) is in-
deed one of the most basic and important applications of
topology in condensed-matter physics [30].

An important discovery of BKT and later authors [11–
13, 28] is that the defect-mediated transition of the plane
rotator (or 2D-XY) model and its analogues can be
mapped to the insulator-conductor transition of a two-
dimensional Coulomb gas [31]. The long-range Coulomb
interactions emerge from a purely local Hamiltonian, so
that the mapping at the microscopic level, although com-
plete [32], is far from transparent. However, as Maggs
and co-workers [33–38] have shown in three dimensions,
a Coulomb fluid can be transformed into a local prob-
lem by using an electric-field representation and intro-
ducing a freely fluctuating auxiliary gauge field. Fol-
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lowing this work, it is straightforward to show that the
XY Hamiltonians that admit a BKT transition map on
to this generalized electrostatic problem in two dimen-
sions. A practical consequence of the phase-space ex-
tension to a fluctuating auxiliary gauge field is the de-
velopment of purely local algorithms for the simulation
of Coulomb fluids in both three [33–38] and two dimen-
sions [39], which circumvent the technical difficulties as-
sociated with long-range interactions. In particular, the
logarithmic potential that governs charge-charge interac-
tions in the two-dimensional Coulomb gas is dealt with
locally, allowing a new approach to the efficient simula-
tion of two-dimensional Coulombic systems.

In this paper, we exploit these developments to formu-
late and simulate a lattice-field description of the two-
dimensional Coulomb gas for the purpose of investigating
the topological properties of the BKT transition. The
BKT transition is topological in the sense that it sep-
arates a topologically ordered phase from a disordered
one. Topological order in this context means that the
local topological defects (charges in the two-dimensional
Coulomb gas) are confined. Vallat and Beck [32] con-
sidered the two-dimensional XY model on a torus, and
showed how a winding field can be associated with the
global topology of the system. In the high-temperature
phase, where charge is deconfined, non-zero values of
this winding field define global topological defects that
are distinct from the local topological defects driving the
BKT transition. Here we show that the lattice-field de-
scription naturally lends itself to classifying and investi-
gating this property. In this paper, we treat only the two-
dimensional Coulomb gas, but in a further publication we
will extend our analysis to the case of two-dimensional
XY models on the torus.

Our key observation is that the topology of the torus on
which the Coulomb gas is placed generates a multiplicity
of states in the lattice electric-field representation that
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are equivalent for charge configurations but not energeti-
cally degenerate. Given an arbitrary charge distribution,
one is at liberty to add an integer multiple of some con-
stant to each component of the harmonic mode of the
electric field while leaving the charge distribution un-
changed. This global topology associated with the BKT
transition describes the winding of charges around the
torus. In the high-temperature phase, charge deconfine-
ment allows for fluctuations in the winding component
of the harmonic mode, which can be classified as differ-
ent topological sectors. Below the transition, however,
the binding of charge pairs causes the winding compo-
nent to be zero. Topological-sector fluctuations in the
electric field therefore mark the appearance of the high-
temperature, topologically disordered phase at the BKT
transition.

The present study of topological-sector fluctuations in
the two-dimensional Coulomb gas may be compared to
previous studies on the three-dimensional Coulomb phase
of spin-ice materials and models [40–43]. In spin ice, the
onset of topological-sector fluctuations is shown to sig-
nal a Curie law crossover [40] for the zero-field suscep-
tibility and a Kasteleyn transition in the presence of an
applied field [41, 42]. Our study of the BKT transition
reveals aspects of topological-sector fluctuations that are
not found in either of these established cases. For exam-
ple, by our analysis, the two-dimensional Coulomb gas
should be considered to present an ergodicity-breaking
transition to a topologically ordered phase in the absence
of an applied field, whereas spin ice has no equivalent
phase.

The paper is organized as follows. In Section II,
we introduce the lattice-field representation of the two-
dimensional Coulomb gas on a torus and use this to define
the partition function and the topological sectors of the
electric field. We use numerical simulations to demon-
strate that topological-sector fluctuations appear in the
high-temperature (conducting) phase but not in the low-
temperature (insulating) phase. In Section III, we show
that the reason for the strict suppression of topological-
sector fluctuations in the low-temperature phase is er-
godicity breaking at the transition. A finite-size scaling
analysis, given in Section IV, confirms that in the ther-
modynamic limit, ergodicity is broken precisely at TBKT.
Conclusions and comparisons with experimental systems
are discussed in Section V.

II. TOPOLOGICAL-SECTOR FLUCTUATIONS

Using the unit system defined in Appendix A, we for-
mulate the two-dimensional Coulomb gas using discrete
vector calculus on a square lattice with periodic bound-
ary conditions (PBCs) applied. The PBCs enforce the
toroidal topology but not the curvature of a true torus.
All functions are defined to be the discrete counterparts
of smooth vector fields [44], and any lattice vector field

F is defined component-wise via [44]

F(x) := Fx

(
x +

a

2
ex

)
ex + Fy

(
x +

a

2
ey

)
ey, (1)

where x is any lattice site and ex/y is the unit vector

in the x/y direction. The operators ∇̃ and ∇̂ are the
forwards and backwards finite-difference operators on a
lattice, respectively, and the lattice Laplacian is defined
by ∇2 := ∇̂ · ∇̃ [44]. The most general electric field E
may be Helmholtz decomposed into the sum of a Poisson
(divergence-full) component −∇̃φ, a rotational compo-

nent Ẽ and a harmonic component Ē:

E(x) = −∇̃φ(x) + Ẽ(x) + Ē. (2)

This electric field is the most general solution to Gauss’
law on a lattice:

∇̂ ·E(x) = ρ(x)/ε0. (3)

Here, ρ(x) := qm(x)/a2 is the charge density at each
lattice site x, q is the elementary charge, the integer m
denotes the charge species, a is the lattice spacing and ε0
is the electric permittivity of free space (see Appendix A).

Using the field E adds an auxiliary field Ẽ to the usual
solution of electrostatics, as in the electrostatic model
of Maggs and Rossetto (MR) [33]. This allows us to
simulate the physics of Coulombic interactions on a lat-
tice via local electric-field updates, avoiding the need to
treat computationally intensive long-range interactions,
as outlined in Appendix B.

The validity of introducing the auxiliary field is seen in
the context of the separability of the partition function
into its Coulombic and auxiliary components: the auxil-
iary field contributes to the internal energy of the system,
but it is statistically independent of the Coulombic ele-
ment. In Appendix B, we give a full description of the
algorithm and a derivation of the partition function for
the Coulomb gas of multi-valued charges.

The internal energy of the electric fields corresponding
to a given charge and auxiliary-field configuration is given
by

U0 =
ε0a

2

2

∑
x∈D
|E(x)|2, (4)

where D is the set of all lattice points. To represent the
Coulomb gas in the grand canonical ensemble, we add a
core-energy term UCore, given by

UCore :=
a4

2

∑
x∈D

εc [m(x)] ρ(x)2, (5)

where εc(m) is the core-energy constant of each charge
mq, and εc(m) = εc(−m) since charges are excited to
the vacuum in neutral pairs. The grand-canonical en-
ergy of the system U = U0 + UCore may be expanded by
combining Eqs. (2), (4) and (5) to give a sum of terms
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arising from the different field components, which add to
the core energy:

U = USelf + UInt + URot + UHarm + UCore. (6)

Here, respectively, URot := ε0a
2
∑

x∈D |Ẽ(x)|2/2 and

UHarm := ε0L
2|Ē|2/2 are the auxiliary-field and

harmonic-mode components of the grand-canonical en-
ergy, and USelf and UInt are the self-energy and Coulom-
bic charge-charge interaction components. As outlined
in detail in Appendix B, the latter two components may
be expressed in terms of the lattice Green’s function G,
according to USelf := a4G(0)

∑
x∈D ρ(x)2/2ε0, UInt :=

a4
∑

xi 6=xj∈D ρ(xi)G(xi,xj)ρ(xj)/2ε0, where G(0) :=

G(x,x). Note that, while UInt can be negative, the sum
USelf + UInt is necessarily ≥ 0, as it arises from the term
in |∇̃φ|2.

Using the above results, we may define the chemical
potential for the introduction of a charge mq:

µm := −
[
G(0)

ε0
+ εc(m)

]
m2q2

2
. (7)

In the following, we specialize to a Coulomb gas of n pairs
of elementary charges of chemical potential µ := µ1, by
setting εc(m = 0,±1) = 0 and εc(m 6= 0,±1) =∞ [45].

The harmonic mode Ē is a uniform field found by av-
eraging the total electric field E(x) over x. In a simply
connected space, the average field may be conveniently
related to the average polarization P arising from an ef-
fective surface charge distribution by Ē = −P/ε0. For
a charge-neutral system in a simply connected space,
P :=

∑
x∈D xρ(x)/N is invariant with respect to the ori-

gin shift x 7→ x+x0, and is therefore origin-independent.
The situation is more complicated on a toroidal surface
as Ē can also depend on a harmonic-field component that
corresponds to a charge winding around the torus, and it
is necessary to adopt a convention to define distances be-
tween points (the concepts ‘close together’ and ‘far apart’
are ambiguous on a torus). In Appendix C, we show in
detail how it is possible to define origin-independent po-
larization Ēp and winding Ēw components of the har-
monic mode such that

Ē = Ēp + Ēw. (8)

Here,

Ēw =
q

Lε0
w, (9)

where w is an integer-valued winding field chosen such
that

Ēp,x/y ∈
(
− q

2Lε0
,

q

2Lε0

]
, (10)

and L is the lattice length.
This decomposition of the harmonic field has the fol-

lowing interpretation. A charge pair may unbind and

wind around the torus in opposing directions before as-
suming its original configuration. When a single charge
winds around the torus in the x/y direction, the x/y
component of the harmonic mode of the electric field
Ēx/y increases by ±q/Lε0. As shown in Appendix C,
the lowest-energy harmonic mode that describes an ar-
bitrary charge distribution is therefore an element of the
set (−q/2Lε0, q/2Lε0] and is defined as the polarization
component in Eq. (10) by applying modular arithmetic
to Ē. The remainder is the winding component. The
modulo operation removes any need for a ‘distances’ con-
vention to define the polarization component, as well as
any origin dependence of the field components (see Ap-
pendix C for further details).

With these results we may use the integer-valued wind-
ing field w to define the topological sector of the system
as the number of times charges wind around the torus
in the x and y directions, with all non-trivial topological
sectors given by w 6= 0. The topological sector of the sys-
tem changes any time a charge pair unbinds and winds
around the torus and hence thermal fluctuations of the
topological sector are closely related to the unbinding of
charge pairs, as elucidated further below.

The statistical mechanics of the topological-sector fluc-
tuations may now be formulated by considering how the
polarization and winding components of the harmonic
mode enter the lattice partition function. As shown in
Appendix B, the partition function splits into two sta-
tistically independent components. One component is
the Coulombic partition function ZCoul and contains all
information about the charge-charge correlations, while
the other is the auxiliary-field partition function ZRot

and contains all information about the auxiliary field:
the auxiliary field can freely fluctuate without affecting
charge-charge correlations (see Appendix B). The parti-
tion function is written as

Z = ZCoulZRot, (11)

where ZCoul is given by

ZCoul =
∑
{ρ(x)}

exp

−βa4

2ε0

∑
xi 6=xj

ρ(xi)G(xi,xj)ρ(xj)


×
∑

w∈Z2

exp

(
−L

2βε0
2
|Ēp +

q

Lε0
w|2
)

× δ
(∑

x∈D
ρ(x)

)
eβµn. (12)

Here, β := 1/kBT is the inverse temperature and the sum∑
{ρ(x)} :=

∑
{a2ρ(x)∈{0,±q}}.

The first exponential of Eq. (12) describes the anhar-
monic charge-charge interactions, the second describes
the polarization and winding state of the system, and
the third describes the sum of the self-energies associated
with each elementary charge. The sum over the winding
field w is necessitated by the degeneracy of the harmonic
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FIG. 1. Topological-sector fluctuations of lattice electric fields
in the two-dimensional Coulomb gas on a torus. Shown is the
x-component of the normalized total harmonic mode LĒx/2π
and winding field LĒw,x/2π versus Monte Carlo time for an
L × L system of linear size L = 16 at T = 1.34 (top) and
T = 2.0 (bottom). The system was simulated using the MR
algorithm with local moves only. At the lower temperature
(top) harmonic-mode fluctuations are finite (black) but there
is no winding-field component (blue), while at the higher tem-
perature (bottom) the winding-field component becomes fi-
nite, indicating topological-sector fluctuations.

mode of the electric field: infinitely many topological sec-
tors describe any given charge configuration. In addition
to the local updates of the MR algorithm (see Appendix
B), we also consider global updates, which correspond to
independently sampling this winding field.

Henceforth, we set the elementary charge q = 2π, the
lattice spacing a = 1, the electric permittivity ε0 = 1, and
Boltzmann’s constant kB = 1. The choice q = 2π recog-
nizes the standard BKT theory, where a charge emerges
as a local 2π winding in an associated lattice field, such
as the spin differences in the 2D-XY model [28].

The BKT transition drives the deconfinement of charge
pairs in the two-dimensional lattice Coulomb gas, which
generates topological-sector fluctuations. The transition

occurs at TBKT = 1.351 (to four significant figures) [46]
in the thermodynamic limit [a value specific to a gas
of elementary charges with εc(m = 1) = 0], which is
scaled to higher temperatures in finite-size systems (see
below). Fig. 1 shows the evolution of the (normalized)
x-component of the harmonic mode of a system of linear
size L = 16, simulated using local moves only (numeri-
cal simulation details are described in Appendix D). No
topological-sector fluctuations are visible just below the
BKT transition temperature TBKT = 1.351, but they be-
come important at temperatures above TBKT.

III. ERGODICITY BREAKING

A convenient measure of the topological-sector fluctu-
ations is the winding-field susceptibility χw, defined by

χw(L, T ) := βε0L
2
(
〈Ē2

w〉 − 〈Ēw〉2
)
. (13)

In a fully ergodic system, χw is nonzero, even in the ab-
sence of charge fluctuations, as can be seen by limiting
the Gibbs ensemble contributing to ZCoul to field config-
urations of zero charge. In this case it is straightforward
to show, using Eqs. (9) and (12), that the constrained
susceptibility is given by

χglobal
w (T ) = βε0L

2 4q2 exp
(
−βq2/2ε0

)
/ε20L

2 + . . .

1 + 4 exp (−βq2/2ε0) + . . .

' 4βq2

ε0
exp

(
−βq2/2ε0

)
, (14)

for kBT � q2/2ε0. The system-size dependence falls out
of this expression so that a fully ergodic system would
show small but finite topological-sector fluctuations in
the low-temperature phase.

Assuming local charge dynamics, a topological-sector
fluctuation requires the separation of a pair of charges
over a distance greater than L/2 in either the x or the
y direction [see Eq. (8) and the subsequent discussion].
As the charge concentration falls to zero at low temper-
ature, screening becomes negligible and the energy bar-
rier against such configurations diverges logarithmically
with the linear system size L [11, 12, 31]. As the charge
concentration increases with temperature, however, en-
tropy and charge screening break down the free-energy
barrier, making it finite at the BKT transition. Above
the transition, charge pairs are free to unbind and trace
closed paths around the torus, giving finite-valued wind-
ing fields, as observed in Fig. 1. In contrast, in the low-
temperature phase, the probability of separation through
a distance L/2 becomes strictly zero in the thermody-
namic limit.

The BKT transition is therefore an ergodicity break-
ing: a change in the phase space explored by a system
with local dynamics. In detail, it is an ergodicity break-
ing between topological sectors, signalled by the strict
suppression of topological-sector fluctuations in the elec-
tric field at T < TBKT. If the dynamics were non-local
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FIG. 2. The susceptibility quotient χlocal
w /χall

w versus temper-
ature for an L × L Coulomb gas of linear size L = 64. In
the region T < 1.2, the quotient is zero, while for T > 1.6,
the quotient approaches unity. This divergence between the
results of the local-update and the all-updates simulations,
accompanied by striking fluctuations in the intermediate re-
gion, signals an ergodicity breaking as the system is cooled
through the BKT transition. The line is a guide to the eye.

(including global updates of the winding component of
the harmonic mode [33–38]), χw would remain finite at
all temperatures.

To explore this ergodicity breaking, we have simulated
the two-dimensional Coulomb gas, first with local field
updates only, and second with both local and global
field updates [33–38]. Corresponding to each case, we
define the winding-field susceptibilities χlocal

w and χall
w ,

respectively. Differences between χlocal
w and χall

w reflect
the inability of local moves to explore a fully represen-
tative phase space on the time scale of the simulation.
To quantify this, we introduce the susceptibility quotient
χlocal

w /χall
w , which may be used to analyse the ergodicity

of the system.
Fig. 2 clearly shows that ergodicity is broken in the

vicinity of the BKT transition. For T > 1.6, χlocal
w = χall

w ,
indicating that the free-energy barrier for a topological-
sector fluctuation via local moves is small. For T < 1.2,
the quotient is zero, indicating that the energy barrier
prevents topological-sector fluctuations via local charge
moves. In between these low- and high-temperature re-
gions there are strong fluctuations in the quotient be-
cause charge deconfinement via local updates represents
increasingly rare events, an inevitable precursor to loss
of ergodicity. In Section IV, this ergodicity breaking is
shown to occur precisely at TBKT in the thermodynamic
limit.

Our analysis thus leads to a precise definition of
topological order for the two-dimensional Coulomb gas
through the ergodic freezing of the topological sector to
its lowest absolute value. Two-dimensional systems with
U(1) symmetry are often associated with an absence of

an ordering field at finite temperature [47]. Here we ex-
plicitly show that, in the case of the BKT transition, the
ordering of a conventional order parameter is replaced
by topological ordering through an ergodicity breaking
between the topological sectors. The topological order is
directly related to the confinement-deconfinement tran-
sition of the charges, the local topological defects of the
electric field. This type of ergodicity breaking is dis-
tinct from either the symmetry breaking that character-
izes a standard phase transition, or that due to the rough
free-energy landscape that develops at a spin-glass tran-
sition [48].

IV. FINITE-SIZE SCALING

In order to explore the approach to the thermodynamic
limit, the two-dimensional Coulomb gas was simulated by
the Monte Carlo method as a function of system size, us-
ing the MR algorithm. The global update was employed
in order to improve the statistics (numerical simulation
details are described in Appendix D).

Fig. 3 shows the simulated winding-field susceptibil-
ity χw as a function of temperature for L × L Coulomb
gases of linear sizes between L = 8 and L = 64. There is
a marked increase in the winding-field susceptibility χw

as the system passes through the BKT transition tem-
perature TBKT = 1.351 [46] for all system sizes. Sus-
ceptibility curves for successive values of L intersect at
temperatures above T = 1.8 and below T = 1.5. Between
these two temperatures, the winding-field susceptibility
increases for a given temperature as the linear system size
L increases. These results are consistent with the finite-
size scaling of the BKT transition temperature [24]: as
the system size decreases the effective transition temper-
ature T ∗(L) increases.

Below TBKT, the probability of a charge pair sepa-
rating over a distance greater than L/2 increases with
decreasing system size. This, combined with the finite-
size transition temperature T ∗(L) also increasing with
decreasing system size, results in the winding-field sus-
ceptibility curves for successive values of L intersecting
in the vicinity of TBKT. The inset in Fig. 3 shows that
the low-temperature crossover points of the susceptibil-
ity curves are at T = 1.45, T = 1.40 and T = 1.37 (to
within estimated error). To extrapolate the trend of the
data shown in Fig. 3 to the thermodynamic limit, we de-
fine the crossover temperature TCross(L) to be the lower
temperature at which χw(L) = χw(L/2).

Fig. 4 shows the crossover temperature TCross as a
function of inverse linear system size 1/L, along with
straight-line fits to the data. In the thermodynamic limit,
TCross extrapolates to the value TCross = 1.351 to within
the estimated error of the extrapolation, that is, it ex-
trapolates to the BKT transition temperature [46]:

TCross(L→∞) = TBKT. (15)
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FIG. 3. The winding-field susceptibility χw as a function
of temperature for L × L Coulomb gases of linear size L =
8, 16, 32 and 64 (using local and global MR moves). The
curves intersect at low and high temperature. Inset: An ex-
panded plot of the data in the region of the low-temperature
intersections (with error bars representing two standard de-
viations). The indicated crossover temperatures are given
by TCross(L = 16) = 1.45, TCross(L = 32) = 1.40 and
TCross(L = 64) = 1.37 (to within estimated error), based on
a data fit.

The 1/L scaling of TCross is unusual for the BKT tran-
sition, for which the finite-size BKT transition temper-
ature typically scales as a simple function of the loga-
rithm of L [24, 49]. However, Minnhagen and Kim [50]
found that a fourth-order cumulant that measures fluc-
tuations of the helicity modulus in the 2D-XY model
also scales as 1/L: as this closely relates to fluctuations
in the harmonic-mode susceptibility [32], it seems likely
that we are observing the same finite-size scaling here.
The magnitude of the winding-field susceptibility at the
crossover points χCross

w (L → ∞) similarly extrapolates
to ∼ 5 × 10−4 in the thermodynamic limit, with an es-
timated error of the same order. This small number is
not measurably different to the winding-field susceptibil-
ity due to global moves only, which, at TBKT, evaluates
to ∼ 5 × 10−5 for all system sizes [see Eq. (14)]. The
inference is that topological-sector fluctuations due to lo-
cal moves only turn on precisely at the universal point
TCross(L → ∞) = TBKT in the thermodynamic limit.
This confirms that topological-sector fluctuations signal
charge deconfinement and the high-temperature phase of
the BKT transition.

Given that the topological-sector fluctuations turn
on at the temperature at which the system experi-
ences the famous universal jump in the helicity modu-
lus [13, 28, 32, 50], it is interesting to estimate the con-
tribution that topological-sector fluctuations make to the
universal jump. To do this, we define the harmonic-
mode susceptibility χĒ and the polarization susceptib-
lity χp by replacing Ēw in Eq. (13) with Ē and Ēp,

0.00 0.01 0.02 0.03 0.04 0.05 0.06

1/L

1.34

1.36

1.38

1.40

1.42

1.44

1.46

T
C
ro

ss

Temperature fit
Temperature data

0

5

10

15

20

25

30

χ
C
ro

ss
w

×
1
03

Susceptibility fit
Susceptibility data

FIG. 4. The crossover temperature TCross (black data; left-
hand y axis) and crossover susceptibility χCross

w (red data;
right-hand y axis) as functions of inverse linear system size
1/L, with error bars representing two standard deviations.
Lines are weighted (with respect to the error bars) linear-
regression fits to each data set, from which the y-intercept
(L → ∞) was calculated. TCross(L → ∞) = 1.351(2), equal
to the BKT transition temperature TBKT [46]. The crossover
susceptibility χCross

w (L→∞) = 5×10−4 with estimated error
of the same order: there is no measurable difference between
this quantity and the winding-field susceptibility due to global
updates only at T = 1.351.

respectively. The helicity modulus is then given by
Υ = ε−1

0 (1− χĒ/2) [32], so that χĒ makes a jump of or-
der unity at TBKT. We find that the ratio (χĒ−χp)/χĒ is
less than 5×10−2 for all T ≤ 1.6 for systems of linear size
L = 8 to 64, showing that the contribution to the uni-
versal jump from topological-sector fluctuations is very
small. This reflects the near-cancellation of 〈Ē2

w〉 with
the coupling term 2〈Ēp · Ēw〉 in the evaluation of χĒ, re-
flecting strong correlations between the polarization and
winding fields at the transition.

V. CONCLUSIONS

In conclusion, the BKT transition has long been a
paradigm for the importance of topological defects in
condensed-matter physics [1]. Vallat and Beck showed
that XY-type systems on the torus generate global topo-
logical defects at the BKT transition that reflect the
toroidal topology [32]. Here we have used lattice-field
simulations to reveal topological-sector fluctuations in
the electric field of a two-dimensional lattice Coulomb gas
on a torus. We have shown how these provide a striking
and sensitive measure of the topological and ergodicity-
breaking character of the BKT transition, allowing a pre-
cise definition of topological order in terms of this broken
ergodicity.

The topological-sector fluctuations at the BKT tran-
sition are very clearly revealed in the lattice electric
field description of the two-dimensional Coulomb gas,
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but we expect them to be equally relevant to any sys-
tem that has a BKT transition. In suitable systems,
the winding-field susceptibility that signals the onset of
topological-sector fluctuations will contribute to experi-
mentally measurable responses of the system. For exam-
ple, in a cylindrical or toroidal magnetic film with XY
symmetry, winding-field fluctuations in the Coulomb gas
representation correspond to measurable spin configura-
tions in the magnetic representation. As we will show
in future work [51], fluctuations of an appropriate topo-
logical sector accompany the destruction of the finite-
size magnetization of an XY spin system through vortex
deconfinement. They could therefore be observable in
ultrathin ferromagnetic metallic films [52] or magnetic
Langmuir-Blodgett films [53, 54].

Another promising system on which to measure these
topological-sector fluctuations is the one-dimensional
quantum lattice Bose gas. When the system is placed
on a ring, its angular momentum is no longer a good
quantum number. The angular momentum can there-
fore fluctuate quantum mechanically, and the system
should undergo a dramatic increase in these fluctua-
tions as it passes through the superfluid – Mott in-
sulator quantum phase transition [55, 56]. This dra-
matic increase in the fluctuations corresponds to finite-
valued global topological defects in the quantum system,
and therefore, via the Feynman path-integral mapping,
to topological-sector fluctuations in the two-dimensional
classical lattice Coulomb gas on a torus. Murray et al.
measured the angular momentum of ring-shaped Bose-
Einstein condensates via the vortex-density profile of the
system [57]. Our measure of the BKT transition could
therefore correspond to equivalent, experimentally mea-
surable topological-sector fluctuations in the cold-atom
system [58].

Finally, it is worth noting that it is natural to asso-
ciate a conducting phase with the excitation of winding
fields, as may be seen by considering a loop of wire in
a changing magnetic field. Recalling that the magnetic
field does no work on a test charge, the induced elec-
tromotive force must arise from a divergence-free electric
field running round the loop. The curl of this field obeys
the Maxwell-Faraday law, ∇ × E = ∂B/∂t. Hence, in
three dimensions, electromagnetic induction provides a
practical method of exciting topological winding fields
analogous to those discussed here.
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Appendix A: Dimensional analysis of the
two-dimensional Coulomb gas

In the following, [ · ] denotes the dimensions of some
quantity, L denotes the dimensions of length, d is the
spatial dimensionality of the system, and ε0 is the vacuum
permittivity in d−dimensional space. Consider Gauss’
law for the MR algorithm,

∇̂ ·E(x) = ρ(x)/ε0, (A1)

and the dimensions of electric charge density,

[ρ(x)] = [q]L−d, (A2)

which generates

[E(x)] = [q]L(1−d) [ε0]
−1
. (A3)

From a consideration of the exponent of the Boltzmann
factor (with β = 1/kBT ) we find a dimensionless group,

Π =
adβε0

2

∑
x∈D
|E(x)|2 (A4)

⇒ [ε0] =[q]2L(2−d) [β] (A5)

⇒ [E(x)] =[q]−1L−1 [β]
−1
. (A6)

Setting the charge to be dimensionless, it follows that

[ε0] = [β] (A7)

and

[E(x)] = [β]−1L−1 (A8)

in d = 2.

Appendix B: The MR electrostatic model and the
partition function

The MR electrostatic model is a lattice-field model
from which it is possible to form the lattice partition
function of electrostatics. To show this, we describe the
MR algorithm in terms of microscopic variables that rep-
resent the local field updates. A conjugate lattice D′ is
defined such that each of its sites is at the centre of each
plaquette of D. Each site in D′ is associated with a real-
valued variable ϕ whose adjustment corresponds to an
update of the auxiliary field, while each pair of nearest-
neighbour sites is associated with an integer-valued vari-
able s whose adjustment corresponds to a charge-hop up-
date. Both sets of variables are subject to PBCs.

Component-wise, we now define the field

[∆θ]i

(
x +

a

2
ei

)
:=

ϕ(x+aei)−ϕ(x)+qs(x+aei,x)

a
,

(B1)
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and identify

E(x) ≡ 1

ε0

 [∆θ]y(x + a
2 ex)

−[∆θ]x(x + a
2 ey)

 . (B2)

The x coordinates in Eq. (B1) are in D′; the x coordi-
nates in Eq. (B2) are in D.

A charge hop in the positive x/y direction corresponds
to a decrease/increase in the relevant s variable by an
amount q, as shown in Fig. 5 (where sij represents the s
variable between sites i and j of the conjugate lattice).

+
α β

7−−−−→

i

j

α
+

β

i

j

FIG. 5. A charge-hop update in the positive x direction: The
sij variable (red arrow) has its value decreased by an amount
q. The value of the electric field flux Eαβ (black arrow) flowing
from site α to site β then decreases by q/ε0, corresponding to
a charge-hop update. Red circles represent positive charges;
white circles represent empty charge sites.

Fig. 6 depicts the microscopic-variable representation
of the auxiliary-field updates, with an alteration of a
particular ϕ variable rotating the field around its sur-
rounding plaquette. In the figure, the ϕ variables are
represented by spin-like arrows in order to emphasize the
rotation of the electric field.

1 2

3 4

7−−−−−−→

1 2

3 4

FIG. 6. An update of the rotational degrees of freedom of the
electric field: The value of the ϕ variable at the centre of a
randomly chosen lattice plaquette decreases by an amount ∆.
This rotates the electric flux by an amount ∆/ε0 around the
plaquette, leaving Gauss’ law satisfied. Red arrows represent
ϕ variables, black arrows represent the electric field, dashed
red lines represent the conjugate lattice D′, the blue arrow
represents the direction of the field rotation and grey circles
represent sites of arbitrary charge.

With the internal energy of the electric fields corre-
sponding to a given charge and auxiliary-field configura-
tion given by U0 in Eq. (4), it is possible to write the
partition function in the microscopic-variable represen-
tation. For ease of manipulation, we allow charge-hop

updates to create charge pairs out of the vacuum and
include the possibility of all integer-valued multiples of
the elementary charge. Combining Eqs. (4) and (B2),
the partition function in the microscopic-variable repre-
sentation is given by

Z =
∑
{s}

∫
Dϕ exp

− β

2ε0

∑
〈x,x′〉

|ϕ(x)−ϕ(x′)+qs(x,x′)|2


× exp (−βUCore) , (B3)

where ∫
Dϕ :=

∏
x∈D′

[∫ q/2

−q/2
dϕ(x)

]
, (B4)

and
∑
{s} :=

∑
{s(x,x′)∈Z}. Here, the grand-canonical

energy of the Coulombic system U = U0 +UCore is used.
This representation reproduces Gauss’ law:∑

x∈∂Γ

∆θ(x) · l(x) = QΓ, (B5)

where QΓ is the charge enclosed within some subset of the
lattice Γ ⊆ D, ∂Γ ⊂ D′ is the boundary enclosing Γ, and l
traces an anticlockwise path along ∂Γ and has dimensions
of length. This equation results from the ϕ variables
cancelling and the s variables being integer valued. It
follows that∑

x∈∂Γ

∆θ(x) · l(x) =a2
∑
x∈Γ

ε0∇̂ ·E(x) (B6)

⇒ ∇̂ ·E(x) =ρ(x)/ε0, (B7)

recovering Eq. (3), as required.
The constraints imposed upon the electric field (Gauss’

law and the form of the harmonic mode, the latter of
which is derived in detail in Appendix C) are combined
with the grand-canonical energy of the system to write
the partition function in terms of the electric field. We
define the set X := qZ/a2, such that the partition func-
tion is given by

Z = |J|
∑

{ρ(x)∈X}

∑
w0∈Z2

∫
DE exp

[
−βε0a

2

2

∑
x∈D
|E(x)|2

]

× exp (−βUCore)
∏
x∈D

[
δ
(
∇̂ ·E(x)− ρ(x)/ε0

)]
× δ

(∑
x∈D

E(x) +

(
N

ε0
P− Lq

ε0a2
w0

))
, (B8)

where the functional integral∫
DF :=

∏
x∈D

[∫
R
dFx(x + aex/2)

∫
R
dFy(x + aey/2)

]
(B9)
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for any vector field F, and |J| is the Jacobian determi-
nant.

This partition function may be separated into two com-
ponents by defining the new rotational field

ẽ(x) := E(x) + ∇̃φ(x)− Ē. (B10)

The partition function is then given by

Z = ZCoul ZRot, (B11)

where

ZCoul :=
∑

{∇2φ(x)∈Y }

exp

[
−βε0a

2

2

∑
x∈D
|∇̃φ(x)|2

]

×
∑

w0∈Z2

exp

(
− β

2ε0
|LP− qw0|2

)
× exp (−βUCore) , (B12)

and

ZRot := |J|
∫
Dẽ exp

[
−βε0a

2

2

∑
x∈D
|ẽ(x)|2

]

×
∏
x∈D

[
δ
(
∇̂ · ẽ(x)

)]
δ

(∑
x∈D

ẽ(x)

)
(B13)

are the Coulombic and auxiliary-field components of the
partition function, respectively. Here Y := qZ/ε0a2 and
we have used the fact that all coupling terms in the
grand-canonical energy sum to zero. The MR algorithm
therefore reproduces Coulombic physics since the sepa-
ration of the auxiliary-field partition function from the
Coulombic partition function ensures that the charge-
charge correlations are independent of the auxiliary field.

The lattice Green’s function G(x,x′) between two
charge-lattice sites x and x′ is defined such that

∇2
xG(x,x′) = −δx,x′ , (B14)

where the subscript x denotes with respect to which co-
ordinate system the lattice Laplacian is applied.

We define the k-space lattice Green’s function G̃,

G̃x′(k) :=
∑
x∈D

e−ik·xG(x,x′), (B15)

and the set
∑

k∈B :=
∏
i∈{x,y}

[∑
ki∈Bi

]
, where Bi :=

{0,± 2π
Nia

,±2 2π
Nia

, · · · ,±(Ni

2 − 1) 2π
Nia

, Ni

2
2π
Nia
} is the set of

k-space values in the i direction, and Ni :=
√
N . Com-

bining Eqs. (B14) and (B15), it then follows that∑
k∈B

eik·(x−x′) = 2
∑
k∈B

eik·x [2− cos(kxa)− cos(kya)]

× G̃x′(k). (B16)

This is solved by

G̃x′(k) =
e−ik·x

′

2 [2−cos(kxa)−cos(kya)]
∀k 6= 0, (B17)

where the k = 0 part of the lattice Green’s function is set
to zero since the harmonic component of E is attributed
to Ē. It follows that

G(x,x′) =
1

2N

∑
k6=0

eik·(x−x′)

2− cos(kxa)− cos(kya)
. (B18)

The internal energy of the Poisson component of the
electric field is given by

UPoisson :=
ε0a

2

2

∑
x∈D
|∇̃φ(x)|2 (B19)

=− ε0a
2

2

∑
x∈D

φ(x)∇2φ(x) (B20)

=
a4

2ε0

∑
xi,xj∈D

ρ(xi)G(xi,xj)ρ(xj), (B21)

hence, the Coulombic partition function can be written
as

ZCoul =
∑

{ρ(x)∈X}

exp

−βa4

2ε0

∑
xi,xj∈D

ρ(xi)G(xi,xj)ρ(xj)


×
∑

w0∈Z2

exp

(
− β

2ε0
|LP− qw0|2

)

× δ
(∑

x

ρ(x)

)
exp (−βUCore) , (B22)

where the δ function enforces charge neutrality in the
Green’s function representation.

Appendix C: Polarization

We consider the sum of each component of the electric
field over the entire lattice in order to analyse the har-
monic mode. The sum of the x/y-component is split into
separate sums over all x/y-components that enter a par-
ticular strip of plaquettes of width a that wrap around
the torus in the y/x direction. Each component of the
harmonic mode Ēx/y is then expressed in terms of the
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charge enclosed along each of the strips of plaquettes:

L2Ēx =a2
∑
x∈D

Ex

(
x +

a

2
ex

)
(C1)

=a

L−2a∑
x=0

(x+a)

L−a∑
y=0

[
Ex

(
x+

a

2
, y
)
−Ex

(
x+

3a

2
, y

)]

+ La

L−a∑
y=0

[
Ex

(
L− a

2
, y
)
− Ex

(a
2
, y
)]

+ La

L−a∑
y=0

Ex

(a
2
, y
)

(C2)

=− a2

ε0

L∑
x=a

x

L∑
y=a

ρ(x) + La

L∑
y=a

Ex

(a
2
, y
)
, (C3)

which follows from applying Gauss’ law to each strip of
plaquettes that wrap around the torus in the y direction.
The same argument holds for the y component, hence,
the harmonic mode is given by

Ē = − 1

ε0
P +

q

Lε0
w0, (C4)

where P :=
∑

x∈D xρ(x)/N is the origin-dependent
polarization vector of the system and w0,x :=

ε0a
∑L
y=aEx(a/2, y)/q is the x component of the origin-

dependent winding field, with the y component defined
analogously. Here, P and w0 are measured from a spe-
cific origin. Note that the above applies to systems com-
posed of either single- or multi-valued charges.

We have thus shown that Ē, which is origin-
independent, is given by the sum of two origin-dependent
terms. One of these is attributed to the polarization
of the system, while the other describes the winding of
charges around the torus given that the polarization is
measured with respect to the chosen origin.

Restricting our attention to the gas of elementary
charges, we now devise an origin-independent measure of
the topological sector of the system. First, we note that
adding ω windings to either component of the harmonic
mode Ē corresponds to

Ēx/y 7→ Ēx/y +
q

Lε0
ω, (C5)

and that this results in a change in the grand-canonical

energy of the system given by

∆U =
Lq

2
ω

(
q

Lε0
ω + 2Ēx/y

)
. (C6)

Hence, given an arbitrary charge distribution, the lowest-
energy harmonic mode that describes the charge distri-
bution is an element of the set in Eq. (10). We therefore
define a convention in which the harmonic mode is given
by Eq. (8), where the polarization component of the har-
monic mode is an element of the set in Eq. (10) and the
winding component of the harmonic mode is given by Eq.
(9).

Appendix D: Simulation details

The system was simulated using the MR algorithm on
an L×L lattice of lattice spacing a = 1. One charge-hop
sweep corresponded to picking a charge site at random,
picking the x or y direction at random, then proposing a
charge hop in the positive or negative direction (at ran-
dom), repeating this 2N times (replacing each site / field
bond after each proposal). One auxiliary-field sweep cor-
responded to picking a charge site at random and propos-
ing a field rotation around the site, repeating this N
times. One global sweep corresponded to proposing a
winding update in the positive or negative (at random)
x and y directions. For all simulations, we performed
five auxiliary-field sweeps per charge-hop sweep, and, for
those simulations that also employed the global update,
we performed one global update per charge-hop sweep.
One charge-hop sweep corresponds to one Monte Carlo
time step.

The data sets in Sections III and IV were averaged over
multiple runs of 106 charge-hop sweeps per lattice site.
The data set in Fig. 2 was averaged over 608 and 446
runs between T = 1.15 and 1.45 with the global update
off and on, respectively, over 384 runs between T = 1.5
and 1.6, and over 256 runs between T = 1.65 and 1.75.

The L = 8 data set in Fig. 3 was averaged over 128
(T = 0.1−1.1), 256 (T = 1.15−1.39;T = 1.41−1.44;T =
1.46 − 1.49), 768 (T = 1.4;T = 1.45;T = 1.5 − 1.75),
and 256 (T = 1.8 − 2.5) runs; the L = 16 data set was
averaged over 128 (T = 0.1−1.1) and 256 (T = 1.15−2.5)
runs; the L = 32 data set was averaged over 128 (T =
0.1− 1.1), 256 (T = 1.15− 2.0), and 128 (T = 2.0− 2.5)
runs; the L = 64 data set was averaged over 128 (T =
0.1 − 1.1), 448 (T = 1.15 − 1.45), 384 (T = 1.5 − 1.6),
256 (T = 1.65− 2.0), and 128 (T = 2.05− 2.5) runs.

We also simulated the L = 10, L = 20, and L = 40
systems over small temperature ranges to calculate ad-
ditional crossover points for Fig. 4: all data sets were
averaged over 512 runs.
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[34] V. Rossetto, Mécanique statistique de systèmes sous
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