The distribution of resistance fluctuations of conducting thin films with
granular structure near electrical breakdown is studied by numerical
simulations. The film is modeled as a resistor network in a steady state
determined by the competition between two biased processes, breaking and
recovery. Systems of different sizes and with different levels of internal
disorder are considered. Sharp deviations from a Gaussian distribution are
found near breakdown and the effect increases with the degree of internal
disorder. However, we show that in general this non-Gaussianity is related to
the finite size of the system and vanishes in the large size limit.
Nevertheless, near the critical point of the conductor-insulator transition,
deviations from Gaussianity persist when the size is increased and the
distribution of resistance fluctuations is well fitted by the universal
Bramwell-Holdsworth-Pinton distribution.Comment: 8 pages, 6 figures; accepted for publication on Physica