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Abstract – Classic experimental data on helium films are transformed to estimate a finite-size
phase order parameter that measures the thermal degradation of the condensate fraction in the
two-dimensional superfluid. The order parameter is found to evolve thermally with the expo-
nent β = 3π2/128, a characteristic, in analogous magnetic systems, of the Berezinskii-Kosterlitz-
Thouless (BKT) phase transition. Universal scaling near the BKT fixed point generates a collapse
of experimental data on helium and ferromagnetic films, and implies new experiments and theo-
retical protocols to explore the phase order. These results give a striking example of experimental
finite-size scaling in a critical system that is broadly relevant to two-dimensional Bose fluids.

Introduction. – The remarkable properties of liquid
helium II – such as its ability to creep over the walls of its
container – establish it as arguably the most interesting
state of condensed matter [1,2]. It may be represented as
a superposition of two fluids: a normal fluid and a super-
fluid with zero viscosity and zero entropy [3]. To deduce
the superfluid fraction, Andronikashvili [4] utilised the fact
that only the normal fluid, with its finite viscosity, moves
with a stack of closely spaced discs. By measuring the fre-
quency of torsional oscillation, the normal density ρn, and
hence the superfluid density, ρs = ρ − ρn, could be mea-
sured (here ρ is the total density). The superfluid fraction
becomes finite at the lambda point (2.2 K), increasing to-
wards unity at zero temperature, where helium behaves
as an ideal Eulerian fluid with only irrotational flow [2].
Many years later, Bishop and Reppy used an adaption
of Andronikashvili’s method with an oscillating substrate
to measure the temperature evolution of ρs for ultrathin
helium films [5].

Superfluidity is driven by Bose condensation and two-
fluid hydrodynamics is a consequence of this [6, 7]. The
condensate wavefunction [8] is represented by a two-
component field ψ(r, t) =

√
n0e

iΦ(r,t) (where n0 is the
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helium number density), which can be considered to be
classical in the region of the transition. The superfluid ve-
locity is equal to the condensate velocity as determined by
the phase of the condensate wavefunction, vs = (~/m)∇Φ,
but the condensed fraction fc = 〈ψ〉2/n0 is only indirectly
related to the superfluid fraction fs = ρs/ρ. The non-
ideality of the Bose fluid, arising largely from the mutual
repulsion of helium atoms, causes the condensate fraction
to be much smaller than the superfluid fraction in the low-
temperature limit: fc ∼ 0.075, compared to fs = 1 [9,10].

Both superfluid and condensate fractions are degraded
by thermal excitations. In bulk helium they fall to zero
in proportion at the lambda transition [11]. In contrast,
helium films have a very different response to thermal fluc-
tuations. High- and low-temperature phases are separated
by a vortex deconfinement transition in the velocity field,
of the Berezinskii-Kosterlitz-Thouless (BKT) [12–14, 17]
type. While the superfluid density remains intensive be-
low the BKT transition, the condensed fraction is non-
intensive, decaying to zero in the thermodynamic limit at
all finite temperatures [6]. Formally, two-dimensional he-
lium II is a superfluid but not a condensate.

The difference between two- and three-dimensional he-
lium II arises because the low-energy spectrum of excita-
tions above the superfluid ground state consists of gapless
phonons [6]. This places the two-dimensional system at
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its lower critical dimension, ensuring critical correlations
and leading to a formal absence of long-range order, in
accord with the theorems of Hohenberg [15] and Mermin-
Wagner [16]. However, the critical system is topologically
ordered, which allows phonon excitations and superfluid-
ity but excludes long-range phase coherence, as measured
by a finite condensate fraction [18].

The Bose fluid may be mapped in detail to the quan-
tum S = 1/2 -XXZ magnetic model [20], a relation that has
added considerably to the understanding of quantum mag-
nets [21]. However, to treat the BKT transition in helium
films, it is sufficient to consider a classical 2D-XY model
within the Villain approximation [18]. In the critical re-
gion, an effective Hamiltonian for the superfluid fraction
is

Hs = (1/2)Υ

∫
|∇Φ(r)|2dr, (1)

where Υ = (~/m)2ρs is the helicity modulus, a measure
of the phase stiffness [11]. This maps to the Hamilto-
nian of a continuum classical harmonic spin wave model
with angular variable Φ and effective exchange constant
Jeff 7→ Υ. The effective spin stiffness is then Keff =
Jeff/kT 7→ Υ/kT . Nelson and Kosterlitz [18] calculated
Keff and hence ρs by integrating out thermally excited
vortex pairs and absorbing their effect into a renormalised
spin stiffness. In the critical regime the spin correlations
decrease as g(r) ∼ r−η with η(T ) = 1/2πKeff(T ), an in-
creasing function of temperature. At the BKT transition
η = 1/4 and Keff reaches the universal value 2/π before
jumping discontinuously to zero.

The Bishop–Reppy measurements of ρs(T ) for helium
films gave very convincing support for the BKT tran-
sition [5]. They were analysed using the theory of
Ambegaokar, Halperin, Nelson and Siggia (AHNS) [19],
which accounted, using the renormalisation group the-
ory [14, 17, 18], for the linear dynamical response of both
bound and free vortices, and their effect on spin waves or
phase fluctuations. As the renormalisation group proce-
dure relates the properties of systems of different sizes, it
allows the calculation of scaling behaviour in the limit of
large system size. The experimental quantities analysed
in this way were period shift and dissipation: the static ρs

and hence Keff or Υ can be related to a combination of
these [5].

Finite-size order. – A practical consequence of the
criticality of the low-temperature phase and the slow de-
cay of correlations with distance is that the Mermin-
Wagner theorem, although valid, is circumvented in all
experimental systems [22, 23]. This arises because the
temperature-dependent exponent, η(T )/2 ≤ 1/8, charac-
terising the decay of order parameter correlations with
distance, is always a number much less than unity in
the low-temperature phase. The consequence is that
even perfect experimental realisations of a 2D-XY sys-
tem of size L must show a finite order parameter of order
M(L) ∼

√
g(L) = L−η/2 that is still far from negligible

even for macroscopic scales of experimental relevance. He-
lium films are no exception to this rule and a correspond-
ing power law tail of the correlation function in reciprocal
space has been observed by neutron scattering [24]. Sim-
ilarly, interest in the nature of the ‘quasi-condensate’ in
the two-dimensional Bose fluid has been generated by el-
egant new experiments on trapped atomic gases [25, 26].
This finite-size order is particularly interesting as it af-
fords experimental access to finite-size scaling at a critical
point. In this paper we explore the relation of superfluid
density to finite-size order, as measured by the condensate
fraction of helium films.

We approximate the helium film to a lattice 2D-XY
model in Villain’s approximation [27] and define the nor-
malised phase order parameter ampltitude Ψ = 〈cos(Φ −
Φ̄)〉 where Φ̄ denotes an instantaneous average. This
corresponds, for the helium film, to the magnetic or-
der parameter of a thin-film magnet: M 7→ Ψ. The
square of the finite-size order parameter is a classical ap-
proximation to the thermal component of the condensate
fraction, measured relative to its zero-temperature value,
Ψ2 ∼ (fc(T ) − fc(0))/fc(0). The classical approximation
breaks down at low temperatures, owing to quantisation
of the normal modes [6].

The order parameters of 2D-XY models of finite ex-
tent have been studied in detail and shown to have several
interesting properties. The instantaneous, spatially aver-
aged, measure of the order parameter is a vector with both
phase and amplitude. Its phase diffuses slowly around a
circle, while the distribution of its amplitude is surpris-
ingly sharply peaked around the mean value [28,29], corre-
sponding to a ‘Mexican hat’ potential, even along the crit-
ical line. At the BKT transition, the temperature evolu-
tion of the amplitude, Ψ, mimics the power law behaviour
of a conventional ferromagnetic transition, with effective
critical exponent β = 3π2/128 ' 0.23 (Ref. [22, 23]) –
one could say that the quasi-long range order is formed at
a quasi-ferromagnetic transition. The universal exponent
was calculated in the scaling limit by the renormalisation
group method and confirmed in finite-size systems by nu-
merical simulations.

It is worth emphasising that while this β is not a con-
ventional critical exponent, it is nevertheless a striking
signature of the BKT transition that has been widely re-
ported in experiments. These include experiments on lay-
ered magnets [30,35–37], ultra thin magnetic films [31–33]
and two-dimensional melting [34]. It has been equally
evident in quasi-classical magnets [30] and in quantum
magnets [35–37], as measured by neutron scattering [30],
µSR [37], magneto-optic Kerr effect [31, 33] and spin-
polarized electron diffraction [32]. Ref. [38] discusses the
range of applicability of this result, the distinction of this
β from conventional critical exponents associated with
symmetry-breaking fields, and a review of the experimen-
tal literature up until 2008. More recent observations in-
clude, for example, Refs. [39, 40]. The effective exponent
β = 3π2/128 has also been recommended as a diagnos-

p-2



Phase order in superfluid helium films

tic for the BKT transition in numerical studies [41], and
has been previously discussed in relation to models of two-
dimensional Bose-Einstein condensates [42].

The question naturally arises: do helium films show the
same scaling of the finite-size order parameter as that ex-
hibited by 2D-XY magnets? A direct test of the question
is possible in principle [24]. Here we propose an experi-
mental protocol that estimates the phase order parameter
Ψ(L) indirectly from the superfluid density measured by
Bishop and Reppy [5]. In analogy to magnetic systems,
we relate Ψ to Υ by the following equation,

Ψ(L, T ) '
(

1

γL2

)kT/8πΥ(L,T )

(2)

where L is a dimensionless measure of the system size
and γ = 1.8456 . . . [29]. The above equation comes from
equating the finite-size helicity modulus divided by tem-
perature, Υ(L, T )/kT with the scale (r) dependent spin
stiffness Keff(r)|r=L, as defined in Refs. [17, 18], and ap-
proximating the finite-size order parameter to Ψ(L, T ) '
(γL2)−1/8πKeff (L,T ), as in Ref. [22].

A necessary condition to obtain Eq. (2) is that
Keff(r, T ) is approximately constant over length scales of
order L, which is the case for Keff(L, T ) ' 2/π. Away
from this universal point, corrections arise from the r-
dependence of Keff(r) [28]. The theory of Ref. [22] that
yields β = 3π2/128, like that of AHNS, uses the nonlinear
renormalisation group equations of Nelson and Kosterlitz
[18]. However, taking Keff(r) to be constant over scales
of order L enforces a neglect of dissipation in the AHNS
dynamical treatment.

Eq. (2) is an experimentally realisable example of crit-
ical finite-size scaling, which here is accessible because of
the continuous line of critical points below the BKT transi-
tion temperature. Dimensional homogeneity requires that
scaling behaviour is confined to an ‘inertial range’ [43]
between two length scales [44, 45]. The first is the micro-
scopic length a, which for helium is the inter-particle spac-
ing and for the 2D-XY model is the lattice constant. The
second is a much larger length scale l, imposed by exper-
imental conditions such as an anisotropy gap, a disorder-
persistence length, a dynamical scale (as in the case anal-
ysed below), or ultimately the system boundaries. The
integral scale L = l/a is then a dimensionless group that
enables the order parameter to acquire the anomalous di-
mension kT/8πΥ(L, T ), as demonstrated by Eq. (2) [29].

Transformation of experimental data. – The
above considerations give a method of experimentally esti-
mating the finite-size order parameter in superfluid helium
films. The integral scale L in the Bishop-Reppy experi-
ment is the dimensionless dynamical length

L '
√

14~
ma2ω

, (3)

where ω is the measurement frequency and m the mass
of a helium atom. This L may be interpreted as a diffu-
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Fig. 1: Finite-size phase order parameter Ψ (large black filled
circles) on length scales of > 105 helium atoms in a superfluid
film, derived by transforming the experimental data of Bishop
and Reppy [5], using Eq. (2), main text. The red line indicates

the power law Ψ = B(TC − T )3π
2/128 (Eq. (4)), with B and

TC calculated from the parameters quoted in Ref. [5] – there
is no further fitting in this comparison between theory and
experiment. The renormalisation group calculation predicts a
close match between theory and experiment only in the range of
the full red line (indicated by the arrow) that terminates at TKT

and T ∗, respectively, in the notation of Ref. [22]. However the
analytic extension of the power law approximately describes
the experimental data over a broader range of temperatures
(dotted red line). The small open blue circles indicate data
analysed with neglect of dissipation.

sion length for vortices, beyond which they couple to the
oscillating substrate and destroy the superfluidity. By fit-
ting the period shift and dissipation data (e.g. Fig. 12 of
Ref. [5]), Bishop and Reppy determined six parameters [5],
of which four relate to the BKT transition: L ' exp(12),
Tc = 1.2043 K, Ts = 1.215 K and b = 5.5. Here Ts is the
superfluid transition temperature, Tc is the BKT transi-
tion temperature and b is a non-universal constant of BKT
theory. The parameters Tc, Ts and b are mutually depen-
dent. Redefining Tc 7→ TKT, the variables may be trans-
formed to the independent pair of parameters defined in
Ref. [22]: Ts 7→ TC(L) = 1.215 K, b2/4TKT 7→ c(L) = 6.28
K−1.

The power law for β is entirely determined by these two
parameters. The specific prediction is [22]:

Ψ(T ) = B(TC − T )3π2/128, (4)

where B and TC depend on L, with

B(L) =

(
1

γL2

)1/16(
3π2

4c(L)(lnL)2

)−3π2/128

. (5)

The power law (Eq. (4)) is predicted to describe the or-
der parameter only in the vicinity of a special temper-
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ature, T ∗, defined such that Υ(T ∗)/kT ∗ = 2/π, though
in practice it is found to hold over a broader temper-
ature range. It follows from the renormalisation group
equations that the two temperatures that characterize the
finite-size rounding of the BKT transition are related:
TC(L) − TKT = 4(T ∗(L) − TKT) = π2/c(L)(lnL)2. Us-
ing these equations and the experimental values quoted
by Bishop and Reppy, we are able to compare the experi-
mental data for helium films with the prediction, Eq. (4).
It should be emphasised that this comparison involves no
further free parameters, the parameters B and TC having
been pre-determined as described.

The results are shown in Fig. 1. Here Υ(L, T )/kT is
derived from the reduced period shift p ≡ 2∆P/P and
dissipation q ≡ Q−1 displayed in Fig. 12 of Ref. [5]. The
relation is Υ(L, T )/kT = (2pTKT/CπT )(1 + q2/p2) where
C = 3.4× 10−6 and TKT = 1.2043 K [5]. This comes from
relating p and q (respectively) to the real and imaginary
parts of the inverse dielectric function defined in Ref. [19]
and using Υ/kT = Keff . The order parameter Ψ has then
been calculated from Eq. (2), while the red lines showing
power law behaviour with β = 3π2/128 have been calcu-
lated from Eqs. (4) and (5).

Referring to Fig. 1, there is excellent agreement be-
tween theory and experiment over the predicted range of
temperature, where Υ/kT & 2/π (see Fig. 1), and quali-
tative agreement over a wider range of temperatures, just
as for magnetic systems. Also shown in Fig. 1 is the data
analysed with neglect of dissipation (i.e. approximating
q = 0). It is confirmed that dissipation is negligible in the
temperature range of interest (full red line, Fig. 1).

The result of Fig. 1 suggests a method of analysing
period shift data in the region where ∆P ∝ Υ. Thus, by
combining Eqs. (2) and (4), it follows that

∆P = αΥ ' −αkT ln(γL2)

8π [lnB + β ln(TC − T )]
, (6)

where α is a scale factor. Reading TC off the ∆P data
as in Ref. [5], and then fitting the data to Eq. (6) by
varying α and B, allows determination of Υ = ∆P/α and
hence Ψ, from Eq. (2). We have tested this method on
the experimental data shown in Figs. 3 and 4 of Ref. [5],
which cover a sufficient temperature range to allow pre-
cise fitting. We find essentially the same result as Fig. 1,
provided that the fitted data is confined to an appropri-
ate range of temperatures somewhat below T ∗. Although
this method is approximate, it offers a simple practical
alternative to the method used to obtain Fig. 1, which
involves the initial step (performed in Ref. [5]) of fitting
the experimental data to the complex numerical solution
of the AHNS equations.

Universal data collapse. – Until now tests of this
universal order parameter scaling have concentrated on
numerical simulation and on experimental molecular and
magnetic systems, with the latter providing the largest
number of data sets [38]. The cut-off length scales asso-

ciated with these experiments (L ∼ 102) are similar to
those available from numerics. The present treatment of
helium films allows for the extension of this analysis, not
only to a wider range of experimental systems but also
to integral length scales orders of magnitude bigger than
those previously studied: L ∼ 105.

This increased range of experimental finite-size scaling
is illustrated in Fig. 2, where we use Eq. (4) to collapse
together the data for the helium films with magnetisation
data for a 1.6 monolayer sample of iron grown along the
cubic (100) direction on a tungsten (100) substrate [32],
which, as Elmers et al. elegantly demonstrated, shows
2D-XY behaviour with L ' 140 through the observed or-
dering transition. Fig. 2a shows Ψ/BT βC versus T/TC.
The data sets fall close to each other and close to the
the theoretical prediction developed for the helium film,
clearly showing a characteristic form for the order pa-
rameter for these diverse systems. However, as the uni-
versal exponent, β = 3π2/128 is predicted at the tem-
perature T ∗, which is itself size dependent, a quantita-
tive scaling protocol demands that we plot Ψ/Ψ∗ versus
(T−TC)/(TC−T ∗), which aligns the two universal temper-
atures at the value −1 in the reduced temperature variable
(here, Ψ∗ = (γL2)−1/16). The resulting scaling collapse is
shown in Figs. 2b and 2c. Excellent quantitative agree-
ment is found between both data sets and our theory at
and around T ∗, confirming this finite-size scaling analysis
as a powerful diagnostic tool for the BKT phase transition
for these apparently disparate systems – the helium film
and the magnetic film. Away from T ∗, although the data
sets remain close to the predicted power law behaviour,
some deviation is observed, as indeed the theory predicts.

The reconstruction of the order parameter through Eq.
(2) can be tested in detail against direct numerical simu-
lation of XY-type models. We have found that, for easily-
simulated system sizes (L ∼ 102), both measures of the
order parameter show the predicted scaling behaviour and
can be collapsed on to scaling plots, as in Fig. 2. However,
systematic differences appear in the unscaled data which
can be attributed to corrections to scaling that we expect
to disappear only logarithmically with system size. This
difference originates from the r dependence of Keff(r) [28]
near T = T ∗. We intend to perform a detailed analysis of
this behaviour in future work.

Discussion. – The effective length scale of the helium
film (already of order L ∼ 105) will increase as 1/

√
ω, as

the measurement frequency goes down and will ultimately
be cut off by the true system size if the frequency is driven
to zero. It would be interesting to test this prediction
experimentally: our Eq. (6) gives a simple theoretical
framework with which to do so. Ideally such an experi-
ment would be precisely analogous to that of Bishop and
Reppy [5], for as emphasised there, to achieve the BKT
transition in helium films depends crucially on the nature
of the substrate.

An appealing aspect of our result is that it associates
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Fig. 2: Scaling collapse of experimental data sets for the phase order parameter of the helium film of Ref. [5] and the magnetic

order parameter for a magnetic film of Ref. [32]. (a) Helium data [5] (Ψ/BT
3π2/128
C , red points) and scaled magnetic order

parameter data [32] (blue points), collapsed on the temperature scale T/TC using quoted parameters from Refs. [5,32]. The line

is the power law Ψ/BT
3π2/128
C = (1 − T/TC)3π

2/128. Note that the helium data from Fig. 12 of Ref. [5] has been extended to
lower temperature using data from Fig. 3 of Ref. [5] analysed with our Eq. (6). (b) Reduced helium film phase order parameter
and magnetic thin film order parameters (Ψ/Ψ∗ with Ψ∗ = (γL2)−1/16) vs. reduced temperature ((T − TC)/(TC − T ∗)). On
this normalised, reduced temperature scale, the universal temperature T ∗ is at −1, as indicated by the red arrow. Same colour
code as in (a). (c) The same, on an expanded temperature scale in the critical region: theoretically, collapse is expected only
near and below T ∗ = −1 (red arrow), on the reduced temperature scale.

a universal temperature dependence with experimental
data that could previously only be fitted with rather
complicated numerical functions [5]. It also represents a
finite-size scaling approach to helium films that comple-
ments others in the literature [47]. However our theory
is presently less complete than that of AHNS in that the
condition discussed above, Keff(r . L) ' Keff(L), when
extended to T > T ∗, amounts to the neglect of dissipa-
tion [19]. Even though dissipation has only a small effect
on the derived order parameter (see Fig. 1), it would be
interesting, in the future, to remedy this deficiency: some
steps in the right direction were already taken in Ref. [28].

It is tempting to interpret Ψ as a measure of the coher-
ence [48] of the helium wavefunction. If we accept this,
then our analysis illustrates that liquid helium films can
show quantum coherence over macroscopic length scales
of l > 10 µm, making them comparable to modern ex-
perimental systems such as cold-atom [26] and exciton-
polaron condensates [49] and coherent over a longer range
than electronic quantum transport devices [50] or micro-
SQUIDS [51].

Our results strengthen the conclusions of the combined
experimental and theoretical works of Bishop and Reppy
and of AHNS, showing that they are wholly consistent
with finite-size order parameter scaling, which can be used
as a key test for the BKT transition [41]. As a conse-
quence, we are able to propose new experiments and a new
protocol for the analysis of experimental data. It would be
interesting to relate these results to direct measurements
and microscopic calculations of the atomic momentum dis-

tribution in helium films [24], as well as to measurements
of the spin wave stiffness in magnetic systems, both quasi–
classical [52] and quantum [21].

Our result is also relevant to experiments on two-
dimensional Bose-Einstein condensates in cold atomic
gases [26,42]. These are typically confined in optical traps
which render them naturally finite sized. In recent years
much has been learned about the relation of Bose conden-
sation to superfluidity and the BKT transition through the
study of such systems: we refer to Ref. [26] for a review.
Related finite-size effects are indeed broadly relevant to
a wide variety of low-dimensional magnetic systems and
condensates, including nuclear magnetic films composed
of 3He [53] and two-dimensional superconductors [54,55].

In conclusion, while the remarkable ‘p-wave’ superfluid,
helium-3 [56], and the highly controllable cold atomic
gases [26] have largely overtaken it as model systems
for studying quantum coherence, ordinary liquid helium
II retains a basic fascination as an iconic state of mat-
ter – at once simple and exotic. Our analysis has ex-
posed 2D-XY universality in a form that links helium
films firmly to magnetic and molecular systems [38], that
acts over widely varying length scales, and that enables
new finite-size scaling experiments. In addition, we have
confirmed (Fig. 2) that magnetic films [32] afford an
equally accurate experimental realisation of the BKT tran-
sition as do helium films [5], a fact that has not been
widely recognised. We have thus unified alternative ap-
proaches to the BKT transition in superfluids [5] and mag-
nets [30–33, 38], and confirmed the universal application
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of BKT theory [12–14,17–19] to experimental systems.
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