The Second Wien Effect describes the non-linear, non-equilibrium response of
a weak electrolyte in moderate to high electric fields. Onsager's 1934
electrodiffusion theory along with various extensions has been invoked for
systems and phenomena as diverse as solar cells, surfactant solutions, water
splitting reactions, dielectric liquids, electrohydrodynamic flow, water and
ice physics, electrical double layers, non-Ohmic conduction in semiconductors
and oxide glasses, biochemical nerve response and magnetic monopoles in spin
ice. In view of this technological importance and the experimental ubiquity of
such phenomena, it is surprising that Onsager's Wien effect has never been
studied by numerical simulation. Here we present simulations of a lattice
Coulomb gas, treating the widely applicable case of a double equilibrium for
free charge generation. We obtain detailed characterisation of the Wien effect
and confirm the accuracy of the analytical theories as regards the field
evolution of the free charge density and correlations. We also demonstrate that
simulations can uncover further corrections, such as how the field-dependent
conductivity may be influenced by details of microscopic dynamics. We conclude
that lattice simulation offers a powerful means by which to investigate
system-specific corrections to the Onsager theory, and thus constitutes a
valuable tool for detailed theoretical studies of the numerous practical
applications of the Second Wien Effect.Comment: Main: 12 pages, 4 figures. Supplementary Information: 7 page