319 research outputs found

    Rhinocerebral mucormycosis treated with 32 gram liposomal amphotericin B and incomplete surgery: a case report

    Get PDF
    BACKGROUND: Mucormycosis (or zygomycosis) is the term for infection caused by fungi of the order Mucorales. Mucoraceae may produce severe disease in susceptible individuals, notably patients with diabetes and leukemia. Rhinocerebral mucormycosis most commonly manifests itself in the setting of poorly controlled diabetes, especially with ketoacidosis. CASE PRESENTATION: A 31-year-old diabetic man presented to the outpatient clinic with the following signs and symptoms: headache, periorbital pain, swelling and loss of vision in the right eye. On physical examination his right eye was red and swollen. There was periorbital cellulitis and the conjunctiva was edematous. KOH preparation of purulent discharge showed broad, ribbonlike, aseptate hyphae when examined under a fluorescence microscope. Cranial MRI showed involvement of the right orbit, thrombosis in cavernous sinus and infiltrates at ethmoid and maxillary sinuses. Mucormycosis was diagnosed based on these findings. Amphotericin B (AmBisome(®); 2 mg/kg.d) was initiated after the test doses. Right orbitectomy and right partial maxillectomy were performed; the lesions in ethmoid and maxillary sinuses were removed. The duration of the liposomal amphotericin B therapy was approximately 6 months and the total dose of liposomal amphotericin B used was 32 grams. Liposomal amphotericin B therapy was stopped six months later and oral fluconazole was started. CONCLUSIONS: Although a total surgical debridement of the lesions could not be performed, it is remarkable that regression of the disease could be achieved with medical therapy alone

    Antifungal activity of amphotericin B conjugated to nanosized magnetite in the treatment of paracoccidioidomycosis

    Get PDF
    This study reports on in vitro and in vivo tests that sought to assess the antifungal activity of a newly developed magnetic carrier system comprising amphotericin B loaded onto the surface of pre-coated (with a double-layer of lauric acid) magnetite nanoparticles. The in vitro tests compared two drugs; i.e., this newly developed form and free amphotericin B. We found that this nanocomplex exhibited antifungal activity without cytotoxicity to human urinary cells and with low cytotoxicity to peritoneal macrophages. We also evaluated the efficacy of the nanocomplex in experimental paracoccidioidomycosis. BALB/c mice were intratracheally infected with Paracoccidioides brasiliensis and treated with the compound for 30 or 60 days beginning the day after infection. The newly developed amphotericin B coupled with magnetic nanoparticles was effective against experimental paracoccidioidomycosis, and it did not induce clinical, biochemical or histopathological alterations. The nanocomplex also did not induce genotoxic effects in bone marrow cells. Therefore, it is reasonable to believe that amphotericin B coupled to magnetic nanoparticles and stabilized with bilayer lauric acid is a promising nanotool for the treatment of the experimental paracoccidioidomycosis because it exhibited antifungal activity that was similar to that of free amphotericin B, did not induce adverse effects in therapeutic doses and allowed for a reduction in the number of applications

    Disruption of the Lipid-Transporting LdMT-LdRos3 Complex in Leishmania donovani Affects Membrane Lipid Asymmetry but Not Host Cell Invasion

    Get PDF
    Maintenance and regulation of the asymmetric lipid distribution across eukaryotic plasma membranes is governed by the concerted action of specific membrane proteins controlling lipid movement across the bilayer. Here, we show that the miltefosine transporter (LdMT), a member of the P4-ATPase subfamily in Leishmania donovani, and the Cdc50-like protein LdRos3 form a stable complex that plays an essential role in maintaining phospholipid asymmetry in the parasite plasma membrane. Loss of either LdMT or LdRos3 abolishes ATP-dependent transport of NBD-labelled phosphatidylethanolamine (PE) and phosphatidylcholine from the outer to the inner plasma membrane leaflet and results in an increased cell surface exposure of endogenous PE. We also find that promastigotes of L. donovani lack any detectable amount of phosphatidylserine (PS) but retain their infectivity in THP-1-derived macrophages. Likewise, infectivity was unchanged for parasites without LdMT-LdRos3 complexes. We conclude that exposure of PS and PE to the exoplasmic leaflet is not crucial for the infectivity of L. donovani promastigotes

    In vitro in vivo relations for the parenteral liposomal formulation of Amphotericin B: A biorelevant and clinically relevant approach

    Get PDF
    There is limited information on how to perform in vitro release tests for intravenously administered parenteral formulations and how to relate the in vitro release with an in vivo pharmacokinetic parameter after the administration of the formulation. In this study, the effect of hydrodynamics (using sample and separate and continuous flow conditions) and medium components (synthetic surfactants, albumin and buffers) on the release of Amphotericin B from the liposomal Ambisome® formulation were investigated. Pharmacokinetic modeling of plasma concentration profiles from healthy subjects administered Ambisome® was used to estimate the in vivo release rate constant of drug from the formulation in order to compare it with the in vitro release profiles. With the estimated in vivo and in vitro release rate constants, release profiles were generated. Two approaches were followed: comparison of in vivo and in vitro release rate constants and comparison of the area under the percent release-time curve from observed in vitro release data and simulated in vivo release data. Albumin was found to be most critical factor for the release of the drug by having a negative effect on the amount of Amphotericin B released. The release profiles obtained with the sample and separate method in both Krebs Ringer buffer- and Phosphate Saline buffer - albumin 4.0% w/v were predictive of the in vivo release profiles in healthy subjects. Determining the factors affecting drug release from parenteral formulations and relating the release profiles to a pharmacokinetic parameter in vivo supports the development of in vitro in vivo relations for parenteral products

    Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B

    Get PDF
    The present study aimed to elucidate the cell death mechanism in Leishmania donovani upon treatment with KalsomeTM10, a new liposomal amphotericin B. Methodology/Principal findings We studied morphological alterations in promastigotes through phase contrast and scanning electron microscopy. Phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and disruption of mitochondrial integrity was determined by flow cytometry using annexinV-FITC, JC-1 and mitotraker, respectively. For analysing oxidative stress, generation of H2O2 (bioluminescence kit) and mitochondrial superoxide O2 − (mitosox) were measured. DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase mediated dUTP nick-end labelling (TUNEL) and DNA laddering assay. We found that KalsomeTM10 is more effective then Ambisome against the promastigote as well as intracellular amastigote forms. The mechanistic study showed that KalsomeTM10 induced several morphological alterations in promastigotes typical of apoptosis. KalsomeTM10 treatment showed a dose- and time-dependent exposure of PS in promastigotes. Further,study on mitochondrial pathway revealed loss of mitochondrial membrane potential as well as disruption in mitochondrial integrity with depletion of intracellular pool of ATP. KalsomeTM10 treated promastigotes showed increased ROS production, diminished GSH levels and increased caspase-like activity. DNA fragmentation and cell cycle arrest was observed in KalsomeTM10 treated promastigotes. Apoptotic DNA fragmentation was also observed in KalsomeTM10 treated intracellular amastigotes. KalsomeTM10 induced generation of ROS and nitric oxide leads to the killing of the intracellular parasites. Moreover, endocytosis is indispensable for KalsomeTM10 mediated anti-leishmanial effect in host macrophag

    N-Alkylated Linear Heptamethine Polyenes as Potent Non-Azole Leads against Candida Albicans Fungal Infections

    Get PDF
    In this study, eighteen heptamethine dyes were synthesised and their antifungal activities were evaluated against three clinically relevant yeast species.. The eighteen dyes were placed within classes based on their core subunit i.e. 2,3,3-trimethylindolenine (5a-f), 1,1,2-trimethyl-1H-benzo[e]indole (6a-f), or 2-methylbenzothiazole (7a-f). The results presented herein imply that the three families of cyanine dyes, in particular compounds 5a-f, show high potential as selective scaffolds to treat C. albicans infections. This opens up the opportunity for further optimisation and investigation of this class compounds for potential antifungal treatment
    • …
    corecore