8 research outputs found

    Dynamic redox and nutrient cycling response to climate forcing in the Mesoproterozoic ocean

    Get PDF
    Controls on Mesoproterozoic ocean redox heterogeneity, and links to nutrient cycling and oxygenation feedbacks, remain poorly resolved. Here, we report ocean redox and phosphorus cycling across two high-resolution sections from the ~1.4 Ga Xiamaling Formation, North China Craton. In the lower section, fluctuations in trade wind intensity regulated the spatial extent of a ferruginous oxygen minimum zone, promoting phosphorus drawdown and persistent oligotrophic conditions. In the upper section, high but variable continental chemical weathering rates led to periodic fluctuations between highly and weakly euxinic conditions, promoting phosphorus recycling and persistent eutrophication. Biogeochemical modeling demonstrates how changes in geographical location relative to global atmospheric circulation cells could have driven these temporal changes in regional ocean biogeochemistry. Our approach suggests that much of the ocean redox heterogeneity apparent in the Mesoproterozoic record can be explained by climate forcing at individual locations, rather than specific events or step-changes in global oceanic redox conditions

    The tempo of Ediacaran evolution

    Get PDF
    The rise of complex macroscopic life occurred during the Ediacaran Period, an interval that witnessed large-scale disturbances to biogeochemical systems. The current Ediacaran chronostratigraphic framework is of insufficient resolution to provide robust global correlation schemes or test hypotheses for the role of biogeochemical cycling in the evolution of complex life. Here, we present new radio-isotopic dates from Ediacaran strata that directly constrain key fossil assemblages and large-magnitude carbon cycle perturbations. These new dates and integrated global correlations demonstrate that late Ediacaran strata of South China are time transgressive and that the 575- to 550-Ma interval is marked by two large negative carbon isotope excursions: the Shuram and a younger one that ended ca. 550 Ma ago. These data calibrate the tempo of Ediacaran evolution characterized by intervals of tens of millions of years of increasing ecosystem complexity, interrupted by biological turnovers that coincide with large perturbations to the carbon cycle

    New U-Pb age from the Shuijingtuo Formation (Yangtze Gorges area) and its implications for the Cambrian timescale

    No full text
    The Terreneuvian Series of the early Cambrian records the first major diversification phase of the canonical Cambrian explosion. However, a paucity of precise radio-isotopic ages for key stratigraphic horizons has resulted in a poor temporal calibration of fossil lowest occurrences (LO) and corresponding rates of evolution throughout the Terreneuvian. Here we present integrated SIMS and CA-ID-TIMS U-Pb analyses on zircons from the basal Shuijingtuo Formation in the Yangtze Gorges area, South China. The dating results provide a depositional age of 526.43 ± 0.54 Ma for the basal Shuijingtuo Formation, and compiled detrital zircon U-Pb dates from the Ediacaran-Cambrian transitional strata in the Yangtze Gorges area indicate their local provenances. The new high-precision date provides a minimum age constraint on the ZHUCE (Zhujiaqing positive carbon isotope excursion) and LOs of Watsonella crosbyi and Aldanella attleborensis in South China, and allows correlation of ZHUCE with either 5.5p or 5p/I′ in Siberia and Morocco. We construct two models of the Ediacaran-Cambrian transitional timescale based on the two alternative correlations of the ZHUCE. The first model correlates the ZHUCE with 5.5p and yields significantly diachronous LOs of W. crosbyi and A. attleborensis between the Siberian Platform and South China. In contrast, the second and our preferred model equates ZHUCE with 5p/I′ and implies relatively synchronous LOs of W. crosbyi and A. attleborensis between the Siberian Platform and South China. In the preferred model, the couplet of ZHUCE/5p/I′ and LOs of W. crosbyi and A. attleborensis serves as a reliable combination to bracket the base of Cambrian Stage 2

    Calibrating the temporal and spatial dynamics of the Ediacaran - Cambrian radiation of animals

    No full text
    The Ediacaran-Cambrian transition, which incorporates the radiation of animals, lacks a robust global temporal and spatial framework, resulting in major uncertainty in the evolutionary dynamics of this critical radiation and its relationship to changes in palaeoenvironmental geochemistry. We first present a new δ13Ccarb composite reference curve for the Ediacaran Nama Group of southern Namibia, and we then outline four new possible global age models (A to D) for the interval 551–517 million years ago (Ma). These models comprise composite carbonate‑carbon isotope (δ13Ccarb) curves, which are anchored to radiometric ages and consistent with strontium isotope chemostratigraphy, and are used to calibrate metazoan distribution in space and time. These models differ most prominently in the temporal position of the basal Cambrian negative δ13Ccarb excursion (BACE). Regions that host the most complete records show that the BACE nadir always predates the Ediacaran-Cambrian boundary as defined by the first appearance datum (FAD) of the ichnospecies Treptichnus pedum. Whilst treptichnid traces are present in the late Ediacaran fossil record, the FAD of the ichnospecies T. pedum appears to post-date the last appearance datums (LADs) of in situ representatives of the skeletal organisms Cloudina and Namacalathus in all environments with high-resolution δ13Ccarb data. Two age models (A and B) place the BACE within the Ediacaran, and yield an age of ~538.8 Ma for the Ediacaran-Cambrian boundary; however models C and D appear to be the most parsimonious and may support a recalibration of the boundary age by up to 3 Myr younger. All age models reveal a previously underappreciated degree of variability in the terminal Ediacaran, incorporating notable positive and negative excursions that precede the BACE. Nothwithstanding remaining uncertainties in chemostratigraphic correlation, all models support a pre-BACE first appearance of Cambrian-type shelly fossils in Siberia and possibly South China, and show that the Ediacaran-Cambrian transition was a protracted interval represented by a series of successive radiations

    Jean-Léon Gérôme and Polychrome Sculpture: Reconstructing the Artist’s Hierarchy of the Arts

    No full text

    The Sedimentary Geochemistry and Paleoenvironments Project.

    Get PDF
    Authors thank the donors of The American Chemical Society Petroleum Research Fund for partial support of SGP website development (61017-ND2). EAS is funded by National Science Foundation grant (NSF) EAR-1922966. BGS authors (JE, PW) publish with permission of the Executive Director of the British Geological Survey, UKRI.Publisher PDFPeer reviewe

    The Molecular Taxonomy of Primary Prostate Cancer

    Get PDF
    There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defectsclose
    corecore