437 research outputs found

    Abnormal skeletal muscle blood flow, contractile mechanics and fibre morphology in a rat model of obese‐HFpEF

    Get PDF
    Peripheral skeletal muscle and vascular alterations induced by heart failure with preserved ejection fraction (HFpEF) remain poorly identified, with limited therapeutic targets. This study used a cardiometabolic obese‐HFpEF rat model to comprehensively phenotype skeletal muscle mechanics, blood flow, microvasculature and fibre atrophy. Lean (n = 8) and obese‐HFpEF (n = 8) ZSF1 rats were compared. Skeletal muscles (soleus and diaphragm) were assessed for in vitro contractility (isometric and isotonic properties) alongside indices of fibre‐type cross‐sectional area, myosin isoform, and capillarity, and estimated muscle PO2. In situ extensor digitorum longus (EDL) contractility and femoral blood flow were assessed. HFpEF soleus demonstrated lower absolute maximal force by 22%, fibre atrophy by 24%, a fibre‐type shift from I to IIa, and a 17% lower capillary‐to‐fibre ratio despite increased capillary density (all P 0.05). Soleus isotonic properties (shortening velocity and power) were impaired by up to 17 and 22%, respectively (P < 0.05), while the magnitude of the exercise hyperaemia was attenuated by 73% (P = 0.012) in line with higher muscle fatigue by 26% (P = 0.079). Diaphragm alterations (P < 0.05) included Type IIx fibre atrophy despite Type I/IIa fibre hypertrophy, with increased indices of capillarity alongside preserved contractile properties during isometric, isotonic, and cyclical contractions. In conclusion, obese‐HFpEF rats demonstrated blunted skeletal muscle blood flow during contractions in parallel to microvascular structural remodelling, fibre atrophy, and isotonic contractile dysfunction in the locomotor muscles. In contrast, diaphragm phenotype remained well preserved. This study identifies numerous muscle‐specific impairments that could exacerbate exercise intolerance in obese‐HFpEF

    Von Bezold assimilation effect reverses in stereoscopic conditions

    Get PDF
    Lightness contrast and lightness assimilation are opposite phenomena: in contrast, grey targets appear darker when bordering bright surfaces (inducers) rather than dark ones; in assimilation, the opposite occurs. The question is: which visual process favours the occurrence of one phenomenon over the other? Researchers provided three answers to this question. The first asserts that both phenomena are caused by peripheral processes; the second attributes their occurrence to central processes; and the third claims that contrast involves central processes, whilst assimilation involves peripheral ones. To test these hypotheses, an experiment on an IT system equipped with goggles for stereo vision was run. Observers were asked to evaluate the lightness of a grey target, and two variables were systematically manipulated: (i) the apparent distance of the inducers; and (ii) brightness of the inducers. The retinal stimulation was kept constant throughout, so that the peripheral processes remained the same. The results show that the lightness of the target depends on both variables. As the retinal stimulation was kept constant, we conclude that central mechanisms are involved in both lightness contrast and lightness assimilation

    Building a Social Mandate for Climate Action: Lessons from COVID-19

    Get PDF
    The COVID-19 imposed lockdown has led to a number of temporary environmental side effects (reduced global emissions, cleaner air, less noise), that the climate community has aspired to achieve over a number of decades. However, these benefits have been achieved at a massive cost to welfare and the economy. This commentary draws lessons from the COVID-19 crisis for climate change. It discusses whether there are more sustainable ways of achieving these benefits, as part of a more desirable, low carbon resilient future, in a more planned, inclusive and less disruptive way. In order to achieve this, we argue for a clearer social contract between citizens and the state. We discuss how COVID-19 has demonstrated that behaviours can change abruptly, that these changes come at a cost, that we need a ‘social mandate’ to ensure these changes remain in the long-term, and that science plays an important role in informing this process. We suggest that deliberative engagement mechanisms, such as citizens’ assemblies and juries, could be a powerful way to build a social mandate for climate action post-COVID-19. This would enable behaviour changes to become more accepted, embedded and bearable in the long-term and provide the basis for future climate action

    Wandering behaviour prevents inter and intra oceanic speciation in a coastal pelagic fish

    Get PDF
    Small pelagic fishes have the ability to disperse over long distances and may present complex evolutionary histories. Here, Old World Anchovies (OWA) were used as a model system to understand genetic patterns and connectivity of fish between the Atlantic and Pacific basins. We surveyed 16 locations worldwide using mtDNA and 8 microsatellite loci for genetic parameters, and mtDNA (cyt b; 16S) and nuclear (RAG1; RAG2) regions for dating major lineage-splitting events within Engraulidae family. The OWA genetic divergences (0-0.4%) are compatible with intra-specific divergence, showing evidence of both ancient and contemporary admixture between the Pacific and Atlantic populations, enhanced by high asymmetrical migration from the Pacific to the Atlantic. The estimated divergence between Atlantic and Pacific anchovies (0.67 [0.53-0.80] Ma) matches a severe drop of sea temperature during the Gunz glacial stage of the Pleistocene. Our results support an alternative evolutionary scenario for the OWA, suggesting a coastal migration along south Asia, Middle East and eastern Africa continental platforms, followed by the colonization of the Atlantic via the Cape of the Good Hope.Portuguese Foundation for Science & Technology (FCT) [SFRH/BD/36600/2007]; FCT [UID/MAR/04292/2013, SFRH/BPD/65830/2009]; FCT strategic plan [UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio

    Carbon Pricing in Climate Policy: Seven Reasons, Complementary Instruments, and Political Economy Considerations

    Get PDF
    Carbon pricing is a recurrent theme in debates on climate policy. Discarded at the 2009 COP in Copenhagen, it remained part of deliberations for a climate agreement in subsequent years. As there is still much misunderstanding about the many reasons to implement a global carbon price, ideological resistance against it prospers. Here, we present the main arguments for carbon pricing, to stimulate a fair and well-informed discussion about it. These include considerations that have received little attention so far. We stress that a main reason to use carbon pricing is environmental effectiveness at a relatively low cost, which in turn contributes to enhance social and political acceptability of climate policy. This includes the property that corrected prices stimulate rapid environmental innovations. These arguments are underappreciated in the public debate, where pricing is frequently downplayed and the erroneous view that innovation policies are sufficient is widespread. Carbon pricing and technology policies are, though, largely complementary and thus are both needed for effective climate policy. We also comment on the complementarity of other instruments to carbon pricing. We further discuss distributional consequences of carbon pricing and present suggestions on how to address these. Other political economy issues that receive attention are lobbying, co-benefits, international policy coordination, motivational crowding in/out, and long-term commitment. The overview ends with reflections on implementing a global carbon price, whether through a carbon tax or emissions trading. The discussion goes beyond traditional arguments from environmental economics by including relevant insights from energy research and innovation studies as well

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics

    Adhesion of perfume-filled microcapsules to model fabric surfaces

    Get PDF
    The retention and adhesion of melamine formaldehyde (MF) microcapsules on a model fabric surface in aqueous solution were investigated using a customised flow chamber technique and atomic force microscopy (AFM). A cellulose film was employed as a model fabric surface. Modification of the cellulose with chitosan was found to increase the retention and adhesion of microcapsules on the model fabric surface. The AFM force–displacement data reveal that bridging forces resulting from the extension of cellulose chains dominate the adhesion between the microcapsule and the unmodified cellulose film, whereas electrostatic attraction helps the microcapsules adhere to the chitosan-modified cellulose film. The correlation between results obtained using these two complementary techniques suggests that the flow chamber device can be potentially used for rapid screening of the effect of chemical modification on the adhesion of microparticles to surfaces, reducing the time required to achieve an optimal formulation

    Experimental investigation of the entanglement-assisted entropic uncertainty principle

    Full text link
    The uncertainty principle, which bounds the uncertainties involved in obtaining precise outcomes for two complementary variables defining a quantum particle, is a crucial aspect in quantum mechanics. Recently, the uncertainty principle in terms of entropy has been extended to the case involving quantum entanglement. With previously obtained quantum information for the particle of interest, the outcomes of both non-commuting observables can be predicted precisely, which greatly generalises the uncertainty relation. Here, we experimentally investigated the entanglement-assisted entropic uncertainty principle for an entirely optical setup. The uncertainty is shown to be near zero in the presence of quasi-maximal entanglement. The new uncertainty relation is further used to witness entanglement. The verified entropic uncertainty relation provides an intriguing perspective in that it implies the uncertainty principle is not only observable-dependent but is also observer-dependent.Comment: 14 pages, 5 figure

    Ring distributions leading to species formation: a global topographic analysis of geographic barriers associated with ring species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the mid 20<sup>th </sup>century, Ernst Mayr and Theodosius Dobzhansky championed the significance of circular overlaps or ring species as the perfect demonstration of speciation, yet in the over 50 years since, only a handful of such taxa are known. We developed a topographic model to evaluate whether the geographic barriers that favor processes leading to ring species are common or rare, and to predict where other candidate ring barriers might be found.</p> <p>Results</p> <p>Of the 952,147 geographic barriers identified on the planet, only about 1% are topographically similar to barriers associated with known ring taxa, with most of the likely candidates occurring in under-studied parts of the world (for example, marine environments, tropical latitudes). Predicted barriers separate into two distinct categories: (i) single cohesive barriers (< 50,000 km<sup>2</sup>), associated with taxa that differentiate at smaller spatial scales (salamander: <it>Ensatina eschscholtzii</it>; tree: <it>Acacia karroo</it>); and (ii) composite barriers - formed by groups of barriers (each 184,000 to 1.7 million km<sup>2</sup>) in close geographic proximity (totaling 1.9 to 2.3 million km<sup>2</sup>) - associated with taxa that differentiate at larger spatial scales (birds: <it>Phylloscopus trochiloide</it>s and <it>Larus </it>(sp. <it>argentatus </it>and <it>fuscus</it>)). When evaluated globally, we find a large number of cohesive barriers that are topographically similar to those associated with known ring taxa. Yet, compared to cohesive barriers, an order of magnitude fewer composite barriers are similar to those that favor ring divergence in species with higher dispersal.</p> <p>Conclusions</p> <p>While these findings confirm that the topographic conditions that favor evolutionary processes leading to ring speciation are, in fact, rare, they also suggest that many understudied natural systems could provide valuable demonstrations of continuous divergence towards the formation of new species. Distinct advantages of the model are that it (i) requires no <it>a priori </it>information on the relative importance of features that define barriers, (ii) can be replicated using any kind of continuously distributed environmental variable, and (iii) generates spatially explicit hypotheses of geographic species formation. The methods developed here - combined with study of the geographical ecology and genetics of taxa in their environments - should enable recognition of ring species phenomena throughout the world.</p
    corecore