4,169 research outputs found

    Grid Generated Turbulence for Aeroacoustic Facility

    Get PDF

    Porous geometry effects on the generation of turbulence interaction noise

    Get PDF

    Disentangling magnetic hardening and molecular spin chain contributions to exchange bias in ferromagnet/molecule bilayers

    Full text link
    We performed SQUID and FMR magnetometry experiments to clarify the relationship between two reported magnetic exchange effects arising from interfacial spin-polarized charge transfer within ferromagnetic metal (FM)/molecule bilayers: the magnetic hardening effect, and spinterface-stabilized molecular spin chains. To disentangle these effects, both of which can affect the FM magnetization reversal, we tuned the metal phthalocyanine molecule central site's magnetic moment to selectively enhance or suppress the formation of spin chains within the molecular film. We find that both effects are distinct, and additive. In the process, we 1) extended the list of FM/molecule candidate pairs that are known to generate magnetic exchange effects, 2) experimentally confirmed the predicted increase in anisotropy upon molecular adsorption; and 3) showed that spin chains within the molecular film can enhance magnetic exchange. This magnetic ordering within the organic layer implies a structural ordering. Thus, by distengangling the magnetic hardening and exchange bias contributions, our results confirm, as an echo to progress regarding inorganic spintronic tunnelling, that the milestone of spintronic tunnelling across structurally ordered organic barriers has been reached through previous magnetotransport experiments. This paves the way for solid-state devices studies that exploit the quantum physical properties of spin chains, notably through external stimuli.Comment: Non

    Fabrication of long-life quasi-solid-state Na-CO2 battery by formation of Na2C2O4 discharge product

    Get PDF
    Rechargeable Na-CO2 batteries are promising energy-storage devices due to their high energy density, environmental friendliness, and cost effectiveness. However, the insulating nature and irreversibility of the Na2CO3 discharge product cause large polarization and poor cyclicity. Here, we report a reversible quasi-solid-state Na-CO2 battery that is constructed by the synergistic action of a Co-encapsulated N-doped carbon framework catalyst and gel electrolyte to ensure the formation of a highly reversible Na2C2O4 discharge product. Experiments and density functional theory calculations indicate that the electron-agglomeration effect of Co nanoparticles enhances CO2 adsorption and lowers energy barrier, as well as promotes Na2C2O4 generation. A gel electrolyte containing an imidazole organic cation is used to inhibit the decomposition of the thermodynamically unstable Na2C2O4. The fabricated Na-CO2 battery exhibits a high discharge capacity of 3,094 mAh g^-1, a high-rate performance of 1,777 mAh g^-1 at a current density of 0.5 mA cm^-2, and excellent cycling performance of 366 cycles (2,200 h)

    Training the next generation of clinical researchers: Evaluation of a graduate podiatrist research internship in rheumatology

    Get PDF
    Background: The aim of this study was to evaluate the effectiveness of the Arthritis Research UK funded graduate internship scheme for podiatrists and to explore the experiences of interns and mentors. Methods: Nine new graduates completed the internship programme (July 2006-June 2010); six interns and two mentors participated in this study. The study was conducted in three phases. Phase 1: quantitative survey of career and research outcomes for interns. Phase 2 and 3: qualitative asynchronous interviews through email to explore the experiences of interns and mentors. Interpretive phenomenological analysis (IPA) of coded transcripts identified recurring themes. Results: Research outputs included ten peer reviewed publications with authorial contributions from interns, 23 conference abstract presentations and one subsequent 'Jewel in the Crown' award at the British Society for Rheumatology Conference. Career progression includes two National Institute for Health research (NIHR) PhD fellowships, two Arthritis Research UK PhD fellowships, one NIHR Master of Research fellowship and one specialist rheumatology clinical post. Two interns are members of NIHR and professional body committees. Seven important themes arose from the qualitative phases: perceptions of the internship pre-application; internship values; maximising personal and professional development; psychosocial components of the internship; the role of mentoring and networking; access to research career pathways; perceptions of future developments for the internship programme. The role of mentorship and the peer support network have had benefits that have persisted beyond the formal period of the scheme. Conclusions: The internship model appears to have been perceived to have been valuable to the interns' careers and may have contributed significantly to the broader building of capacity in clinical research in foot and ankle rheumatology. We believe the model has potential to be transferable across health disciplines and on national and international scales

    The Analyticity of a Generalized Ruelle's Operator

    Full text link
    In this work we propose a generalization of the concept of Ruelle operator for one dimensional lattices used in thermodynamic formalism and ergodic optimization, which we call generalized Ruelle operator, that generalizes both the Ruelle operator proposed in [BCLMS] and the Perron Frobenius operator defined in [Bowen]. We suppose the alphabet is given by a compact metric space, and consider a general a-priori measure to define the operator. We also consider the case where the set of symbols that can follow a given symbol of the alphabet depends on such symbol, which is an extension of the original concept of transition matrices from the theory of subshifts of finite type. We prove the analyticity of the Ruelle operator and present some examples

    From social context and resilience to performance through job satisfaction: A multilevel study over time

    Get PDF
    Giving the crucial role of organizational context in shaping individual attitudes and behaviors at work, in this research we studied the effects of collective work-unit Perceptions of Social Context (PoSC) on individual work resilience and two key individual outcomes: job satisfaction and job performance as rated by the supervisor. We theorized that collective PoSC act as antecedents of individual variables, and that individual job satisfaction mediates the relationship between collective PoSC and job performance, and between work resilience and job performance over time. A sample of 305 white-collar employees, clustered in 67 work-units, participated in the study. Hierarchical linear modeling highlighted that collective PoSC are significant related to individual work resilience. Moreover, results showed that individual job satisfaction fully mediates the relationship between collective PoSC and individual job performance and the relationship between individual work resilience and individual job performance. At a practical level, results suggest that interventions on collective PoSC may increase work resilience, job satisfaction and job performance over time at the individual level
    • …
    corecore