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SUMMARY

Rechargeable Na-CO2 batteries are promising energy-storage devices
due to their high energy density, environmental friendliness, and cost
effectiveness. However, the insulating nature and irreversibility of
the Na2CO3 discharge product cause large polarization and poor
cyclicity. Here, we report a reversible quasi-solid-stateNa-CO2 battery
that is constructed by the synergistic action of a Co-encapsulated
N-doped carbon framework catalyst and gel electrolyte to ensure the
formation of a highly reversible Na2C2O4 discharge product. Experi-
ments and density functional theory calculations indicate that the
electron-agglomeration effect of Co nanoparticles enhances CO2

adsorption and lowers energy barrier, as well as promotes Na2C2O4

generation. A gel electrolyte containing an imidazole organic cation
is used to inhibit the decomposition of the thermodynamically
unstable Na2C2O4. The fabricated Na-CO2 battery exhibits a high
discharge capacity of 3,094 mAh g�1, a high-rate performance of
1,777 mAh g�1 at a current density of 0.5 mA cm�2, and excellent
cycling performance of 366 cycles (2,200 h).

INTRODUCTION

Metal-CO2 batteries have attracted immense attention due to their capability

to convert contaminated gas such as CO2 into energy resources via a ‘‘clean’’

strategy.1–3 Additionally, due to the abundance of sodium resources, the Na-CO2

battery has great potential as a portable energy-storage device because of its low

charging voltage compared with that of a Li-CO2 battery.
4,5 However, Na2CO3, be-

ing considered as the final discharge product in a Na-CO2 battery, is insulating and

thermodynamically stable. Its slow and incomplete decomposition severely blocks

gas-diffusion channels during the charging process, forming an irreversible

Na-CO2 battery with a large overpotential and poor cycling performance.6,7 Thus,

it is vital to overcome the insulating drawback of Na2CO3 and hence to accelerate

the practical application of Na-CO2 batteries.

Until recently, subtly changing the discharge products has been considered a more

effective strategy to overcome the limitations of the discharge product of Na2CO3

than enhancing the reduction performance of the catalyst toward it.8,9 The more

conductive and easily decomposed oxalate (C2O
2�
4 ) has been identified as a good

substitute for carbonate (CO2�
3 ); the capacity retention and cycling performance

of Na-CO2 batteries could be significantly improved by generating C2O
2�
4 as the

final discharge product. Hence, the simultaneous generation and stabilization of

C2O
2�
4 for improving the performance of Na-CO2 batteries is challenging. Previous
Cell Reports Physical Science 3, 100973, July 20, 2022 ª 2022 The Author(s).
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research reported an effective strategy of mitigating the disproportionation of

C2O
2�
4 by the charge-transfer interaction of a special catalyst with oxalate.10,11 How-

ever, this strategy severely limits the selection of catalysts, which is unsuitable for a

lot of catalysts with stronger catalytic properties but without the ability to stabilize

Na2C2O4. Consequently, there is an urgent need for a general approach to construct

metal-CO2 batteries with C2O
2�
4 as the final discharge product, promoting their

large-scale applications.

In this study, a highly reversible quasi-solid-state Na-CO2 battery with Na2C2O4 as

the final discharge product is constructed through a rational design of cathode sys-

tem. Co nanoparticles in catalysts of Co-encapsulated N-doped carbon framework

(Co-NCF) promote the formation of a highly reversible Na2C2O4 discharge product,

as indicated by experimental techniques (spectroscopy and electrochemical

analysis) and density functional theory (DFT) calculations. Subsequently, the

Na2C2O4 generated in situ is stabilized via interactions with organic cations in the

gel electrolyte, retarding the transformation of Na2C2O4 to Na2CO3. The

fabricated quasi-solid-state Na-CO2 battery exhibits a large discharge capacity of

3,094 mAh g�1, a high-rate performance (1,777 mAh g�1 at a current density of

0.5 mA cm�2), and excellent cycling performance of 367 cycles (2,200 h) at a

current density of 0.1 mA cm�2. This study provides a feasible and efficient route

of promoting Na2C2O4 as the final discharge product through rational designing

the cathode system, which shall be helpful for future research further developing

metal-CO2 batteries.
RESULTS

Physical and chemical properties of Co-NCF catalyst

The X-ray diffraction (XRD) analysis, which was performed to determine the compo-

sition of Co-NCF (Figure 1A), indicated the presence of Co, with distinct peaks at

44.1�, 51.7�, and 75.8� corresponding to the (111), (200), and (220) planes of metallic

Co nanoparticles, respectively (JCPDS no. 15-0806).12 A peak was observed at

26.2�, corresponding to the graphite (002) plane. Scanning electron microscopy

(SEM) images with different magnifications indicated that the Co-NCF exhibited

polyhedral morphology, with a rough surface containing carbon nanotube (CNT)

growth (Figures 1B and 1C). The fine network of crystalline CNTs improved the

efficiency of the mass transfer and electronic conductivity.13–15 Transmission elec-

tron microscopy (TEM) was used to further elucidate the morphology and size of

Co-NCF, whereby it exhibited a highly uniform dodecahedral morphology with an

average size of about 570 nm (Figures 1D and 1E). Its high-resolution TEM

(HRTEM) image (Figure 1F) indicated interplanar distances of 0.182 and 0.37 nm

corresponding to the (200) planes of metallic cobalt and (002) planes of graphitic

carbon, respectively. Selected-area electron diffraction (SAED) showed that the

as-prepared Co-NCF was polycrystalline. Additionally, high-angle annular dark-field

scanning TEM (HAADF-STEM) images (Figures 1G–1J) indicated the homogeneous

dispersion of Co, C, and N in Co-NCF. The chemical compositions of the N dopants

were investigated using X-ray photoelectron spectroscopy (XPS); the results indi-

cated that the synthesized Co-NCF consisted of Co, C, and N (Figure S1). As shown

in Figure 1K, the N 1s spectrum was decomposed into three types of nitrogen peaks

corresponding to 398.76, 399.96, and 401.40 eV for pyridinic N, pyrrolic N, and

graphitic N, respectively.16,17 A large interaction between pyridine N and CO2

molecules could improve the CO2 absorption, pyrrolic N could effectively

adsorb Na+, and graphitic N could improve the Co-NCF conductivity.18–20 The Co

2p3/2 spectrum showed three fitting peaks at 782.94, 780.63, and 778.52 eV
2 Cell Reports Physical Science 3, 100973, July 20, 2022



Figure 1. Characterization of Co-NCF catalyst

(A) XRD patterns of Co-NCF.

(B and C) SEM images of Co-NCF at different magnifications.

(D and E) TEM images of Co-NCF at different magnifications.

(F) HRTEM image of Co-NCF. Inset: SAED pattern of Co-NCF.

(G–J) HAADF-STEM image of Co-NCF (G) and corresponding element mappings of (H) Co, (I) C, and (J) N.

(K and L) XPS spectra of (K) N 1s and (L) Co 2p3/2 in Co-NCF.
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corresponding to the satellite Co state, Co-Nx, and Co-Co, respectively, which

determined the reaction route, as discussed later (Figure 1L).21,22 Based on N2

adsorption-desorption isotherms, the specific surface area (SSAs) of the Co-NCF

was 1,263 m2 g�1. Furthermore, Barrett-Joyner-Halenda (BJH) analysis indicated

an average pore diameter of 30 nm (Figure S2), thus enabling good adsorption by

the Co-NCF catalysts and providing sufficient active sites for the electrochemical

conversion of CO2.
23–25

Physical and chemical properties of gel electrolyte

The gel electrolyte is a material consisting of two or more components (one of which

is a liquid) and is soft, solid, or solid-like in nature.26 Herein, a gel electrolyte with

highly ionic conductivity was designed to obtain better electrochemical perfor-

mance of the quasi-solid-state Na-CO2 battery. A TEM image of the original CNT

(Figure S3) indicated that they were entangled with each other, forming complex

bundles due to strong van der Waals forces.27 Upon gelation, the entangled CNT
Cell Reports Physical Science 3, 100973, July 20, 2022 3



Figure 2. Characterization of gel electrolyte

(A) Preparation of gel electrolytes with NaTFSI.

(B) TEM image of a gel without NaTFSI.

(C) TEM image of a gel with NaTFSI.

(D) Raman spectral curves of the gels (with and without NaTFSI).

(E) EIS curves of the gels (with and without NaTFSI).
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bundles formed a three-dimensional (3D) network due to the interaction of the

organic cations in the imidazolium ion group of the 1-ethyl-3-methyl imidazolium

([C2C1im]) bis (trifluoromethylsulfonyl) imide ([NTf2]) ionic liquid (IL) with the p elec-

trons of CNT (Figure 2A).28 In addition, given its high electrical conductivity (102–103

S cm�1), CNTs serve as electron conduction channels for gel electrolytes.29,30

Physical properties of the as-prepared gel electrolyte were characterized, as shown

in Figures 2B and 2C. In this study, unlike previous work, NaTFSI was added to the

gel electrolyte to increase ionic conductivity.31 No significant changes in

morphology were observed after the addition of NaTFSI, indicating a negligible in-

fluence of NaTFSI on the formation of the gel electrolyte. Figure 2D shows the

Raman spectra of the original CNT and the gel (with and without NaTFSI); two typical

peaks of the D and G bands were detected, corresponding to the tangential vibra-

tions of the carbon atoms in the nanotubes and the defects of the carbon atom lat-

tice, respectively.32 The D and G bands of the gels were shifted to a slightly higher

region compared with those of the pure CNTs, attributed to the transfer of the CNT

surface electrons to the electron-deficient imidazolium ions in the [C2C1im][NTf2] IL

during gel formation.33 Electrochemical impedance spectroscopy (EIS) was used to

investigate the ionic transfer dynamics, as shown in Figure 2E. The gel with NaTFSI
4 Cell Reports Physical Science 3, 100973, July 20, 2022
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exhibited a higher ionic conductivity (5.33 10�3 S cm�1) than the gel without NaTFSI

(3.83 10�3 S cm�1), indicating enhanced migration of ionic due to NaTFSI addition.

This may be due to the addition of NaTFSI leading to an extensive aggregation with

the permeation path of Na cations in the gel electrolyte. The extensive aggregation

allows for more rapid site exchange through a structural rearrangement, thus result-

ing in a higher diffusion coefficient of Na ions.34 Figure S4 shows the linear sweep

voltammetry (LSV) curves of the gels with and without NaTFSI. The electrochemical

window of the gel with NaTFSI (4.2 V) was slightly lower than that of the gel without

NaTFSI (4.5 V), possibly due to the decomposition of NaTFSI. However, these values

of the gel with NaTFSI indicated better electrochemical performance and sufficient

thermal stability for the practical application of a quasi-solid-state Na-CO2 battery

(Figures S5–S7). It is worth noting that the addition of NaTFSI would not affect the

species of discharge products (Figure S8). Therefore, the gel with NaTFSI is used

in the quasi-solid-state Na-CO2 battery.

Electrochemical performance of quasi-solid-state Na-CO2 batteries

To understand the catalytic effect of N-CNT, the rhombic dodecahedron structure of

NCF and Co nanoparticles on the CO2 reduction reaction (CO2RR) pathway in Co-

NCF, quasi-solid-state Na-CO2 batteries were prepared using a gel electrolyte

with Co-NCF, NCF (Zif-8 derivative), commercial N-CNT, and commercial Ru/C cat-

alysts (Figures S9–S15). The discharge-charge profiles of the batteries with different

catalysts are shown in Figure 3A. The voltage gap of the quasi-solid-state Na-CO2

battery using Co-NCF was �1.7 V at the cut off voltage of 4 V, lower than that

of NCF, N-CNT, and Ru/C catalysts. This indicates that the Co nanoparticles in

the Co-NCF catalyst can significantly improve the overall performance of the

battery. The discharge capacities of the batteries were tested at a current

density of 0.1 mA cm�2 with a cut off voltage of 1 V (Figure 3B). The battery with

the Co-NCF catalyst exhibited a higher discharge capacity of 3,094 mAh g�1 at

0.1 mA cm�2, approximately 2.33, 2.94, and 4.19 times higher than that of N-CNT

(1,330 mAh g�1), Ru/C (1,051 mAh g�1), and NCF (738 mAh g�1), respectively.

The high discharge capacity of the quasi-solid-state Na-CO2 battery with the Co-

NCF catalyst could be attributed to the high SSAs of Co-NCF, accommodating

more discharge products and alleviating gas blockages. Additionally, the catalyst

is covered by the discharge products during the discharge process, resulting in

active-site inactivation. Unlike the insulated Na2CO3, Na2C2O4 with high electron

conductivity can alleviate catalyst active-site inactivation.35,36

Figures 3C and S16 show the rate performance of the quasi-solid-state Na-CO2 bat-

teries with different catalysts. Surprisingly, the quasi-solid-state Na-CO2 battery with

the Co-NCF catalyst exhibited a large discharge capacity (1,777 mAh g�1) at a high

current density (0.5 mA cm�2), attributed to weak catalyst poisoning and the pres-

ence of abundant catalytic active sites (Co nanoparticles). As shown in Figures 3D

and S17, the cycle lives of quasi-solid-state Na-CO2 batteries with different catalysts

were tested. The battery with the Co-NCF catalyst exhibited better cyclicity (more

than 367 cycles at 0.1 mA cm�2) than the quasi-solid-state Na-CO2 batteries with

the NCF (26 cycles), N-CNT (32 cycles), and Ru/C (74 cycles) catalysts. This improved

cyclicity could be attributed to good reversibility of the discharge product. Addition-

ally, the discharge capacity-retention rates of the quasi-solid-state Na-CO2 batteries

with different catalysts were examined at a current density of 0.1 mA cm�2 with cut

off voltages in the range of 1 to 4 V (Figure 3E). The discharge capacity retention of

the Co-NCF catalyst was 78.2%, which was higher than that of N-CNT (24.5%), Ru/C

(42%), and NCF (38.4%). EIS was used to investigate the impedance change of the

quasi-solid-state Na-CO2 batteries with the Co-NCF, N-CNT, and NCF catalysts
Cell Reports Physical Science 3, 100973, July 20, 2022 5



Figure 3. The electrochemical performance of the quasi-solid-state Na-CO2 batteries

(A) Voltage gap curves of batteries with different catalysts at a current density of 0.1 mA cm�2.

(B) Discharge capacity of batteries with different catalysts at a current density of 0.1 mA cm�2.

(C) Rate performance of batteries with different catalysts.

(D) Cycling performance of batteries with different catalysts at a current density of 0.1 mA cm�2, with a discharge-change time of 3 h.

(E) Capacity retention rate with different catalysts at a current density of 0.1 mA cm�2.

(F) Alternating current (AC) impedance spectrum curves of batteries with different catalysts.

(G) Discharge capacity curves with Co-NCF at different temperatures.
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after discharge charge (Figure 3F). A slight increase in the total resistance (77 U) of

the Na-CO2 battery with the Co-NCF catalyst after discharge charge was observed,

indicating easier decomposition of the discharge product.37,38 On the other hand,

the Co-NCF catalyst exhibited a high discharge capacity of 3,837 mAh g�1 at

60�C, indicating good high-temperature stability of the quasi-solid-state battery

with Co-NCF (Figure 3G).

Product characterization of battery reactions

To determine the influence of the cathode system on the charge and discharge

process and reaction mechanism of the Na-CO2 battery, the discharge products

were studied in depth by in situ Raman and ex situ XPS. As shown in Figure 4A,

there is a weak peak at 1,090 cm�1 in the initial state and no significant change

during the charging/discharging process, which is regarded as the peak of

binder (polytetrafluoroethylene [PTFE]) in the gas-diffusion layer (Figure S18). Inter-

estingly, a new characteristic peak corresponding to C–C bond of C2O
2�
4 was de-

tected at 893 cm�1 with increasing discharge time, suggesting the production of

Na2C2O4.
39 The peak intensity of Na2C2O4 gradually increases with increasing
6 Cell Reports Physical Science 3, 100973, July 20, 2022



Figure 4. Characterization of discharge products of quasi-solid-state Na-CO2 batteries

(A) In situ Raman spectra of quasi-solid-state Na-CO2 batteries with Co-NCF catalyst and gel electrolyte.

(B) In situ Raman spectra of quasi-solid-state Na-CO2 batteries with N-CNT catalyst and gel electrolyte.

(C–E) Ex situ O 1s XPS spectra of quasi-solid-state Na-CO2 batteries using different catalysts and the gel electrolyte.

(F–H) Ex situ O 1s XPS spectra of Na-CO2 batteries using the Co-NCF catalyst and different electrolytes.
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discharge time compared with the peak of Na2C2O4 that disappears during the sub-

sequent charging process, indicating the presence of Na2C2O4 and the complete

removal of Na2C2O4 during the first discharge and charge.

In addition, Na2C2O4 was still the discharge product in the quasi-solid Na-CO2 bat-

tery after long cycling by ex situ XRD analysis (Figure S19). Thus, Na2C2O4 was the

final discharge product in the quasi-solid-state Na-CO2 battery with the Co-NCF

catalyst and gel electrolyte. The following reactions occurred in the battery

(Equation 1):

2Na+ + 2CO2 + 2e�4Na2C2O4 (Equation 1)

As can be seen from Figure 4B, the intensity of the characteristic peak (C–O bond of

carbonate) at 1,090 cm�1 gradually increased during the discharge process when the
Cell Reports Physical Science 3, 100973, July 20, 2022 7
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N-CNTwas used as catalyst.40 However, the intensity of the peak did not decrease to

the initial state during the charging process, which indicates the formation and

incomplete decomposition of Na2CO3. This is the same result as that obtained

with the NCF catalyst (Figure S20). This indicated that the quasi-solid-state Na-

CO2 batteries with NCF or N-CNT catalyst proceeded according to the chemical re-

action of Equation 2.

4Na+ + 3CO2 + 4e�/2Na2CO3 +C (Equation 2)

To further explore the effect of Co-NCF catalysts on the discharge products, the

discharge products of quasi-solid-state Na-CO2 batteries are characterized by ex

situ XPS (Figures 4C–4H). As shown in Figure 4C, it was found that one fitting

peak located at 530.4 eV corresponding to C2O
2�
4 was observed for quasi-solid-

state Na-CO2 battery with Co-NCF catalyst and gel electrolyte, which was consistent

with O 1s spectrum of commercial Na2C2O4 (Figure S21), indicating the generation

of Na2C2O4. Although Na2C2O4 cannot be detected for the discharge products with

the N-CNT or NCF catalyst, a significant peak of 531.7 eV (Na2CO3) was observed

(Figures 4D and 4E).41 This also verifies that Co nanoparticles of Co-NCF catalyst

significantly determine the discharge products of quasi-solid-state Na-CO2

batteries.

To investigate the effect of electrolyte on generation of Na2C2O4, the discharge

products of Na-CO2 batteries with Co-NCF catalyst and aqueous electrolyte (satu-

rated NaCl), organic electrolyte (tetraethylene glycol dimethyl ether) were subse-

quently analyzed (Figures 4F and 4G). Two fitting peaks of Na2C2O4 and Na2CO3

can be obtained from O 1s XPS spectrum, which is consistent with the Raman results

(Figures S22A and S22B), suggesting that a disproportionation reaction occurred

(Equation 3). Therefore, it is reasonable to believe that there is a charge transfer be-

tween the imidazole-based organic cations in the gel and the in situ generated

Na2C2O4, which reduced the charge density of Na2C2O4 and relieved Na2C2O4

from the disproportionation reactions. This also can be verified from the discharge

products (Na2C2O4) with [C2C1im][NTf2] IL electrolyte (Figures 4H and S22C). It is

notable that although [C2C1im][NTf2] IL can be used as an electrolyte to stabilize

Na2C2O4, its liquid character leads to electrolyte-leakage safety issues.42 In addi-

tion, its poor conductivity increases the energy barrier of CO2RR, which is not a

good candidate for the real application of Na-CO2 batteries (Figure S23).43,44

2Na2C2O4 / 2Na2CO3 +C+CO2[ (Equation 3)

DFT calculations

DFT calculations were used to identify the origin of the high catalytic performance of

Co-NCF and provide an in-depth understanding of its selective CO2RR activity. Ac-

cording to XRD and SAED, the (111), (200), and (220) planes were the primary

exposed crystal planes of the Co nanoparticles on the NCF catalyst, while the pri-

mary crystal plane of NCF was characterized as the graphitic carbon (002) plane.

Additionally, XPS analysis indicated that the major speciation of nitrogen in the

graphitic carbon (002) layer involved graphitic N, pyridinic N, and pyrrolic N. Fig-

ure S24 shows the top view of different Co nanoparticle surfaces of the Co-NCF

structure. The Co nanoparticles were exposed on the carbon surface, consistent

with the experimental results, confirming the structure. Notably, in situ Raman re-

sults and the adsorption-desorption isotherm of CO2 indicated that the Co nanopar-

ticles in Co-NCF played a significant role in the selective CO2RR activity and CO2

chemisorption (Figure S25). Subsequently, the adsorption energies of CO2 at the

different surfaces of the Co nanoparticles in Co-NCF were analyzed (Figure S26).
8 Cell Reports Physical Science 3, 100973, July 20, 2022



Figure 5. DFT study of Co-NCF

(A–D) *CO2 adsorption on Co-NCF (111) (A), *C2O4 adsorption on Co-NCF (111) (B), *NaC2O4 adsorption on Co-NCF (111) (C), and *Na2C2O4

adsorption on Co-NCF (111) (D). The asterisk represents the adsorption state.

(E and F) Calculated energetic profiles of (E) Na2CO3 and (F) Na2C2O4 nucleation on the Co-NCF (111) surfaces at U = 0 V. The Fermi level is indicated by

a vertical line.

(G and H) The total and partial density of states (TDOS and PDOS) of NCF and Co-NCF (111), respectively. The inserts show charge density image of (G)

NCF and (H) Co-NCF (111).
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The highest adsorption energy was �1.09 eV on Co (111), indicating more probable

catalytic sites for CO2RR.
45,46

The reaction pathways of the CO2RR processes were also elucidated by analyzing

the reaction thermodynamics. The adsorption structures of the intermediates are

shown in Figures 5A–5D and S27. Figures 5E and 5F show the CO2RR Gibbs free en-

ergy (DG) on the (111) surface of Co-NCF with the correlative nucleation of Na2C2O4

and Na2CO3, triggered by Na+ adsorption in the presence of electrons. Oxalate

generation was the kinetically controlled step for Na2C2O4 nucleation, while carbon-

ate production was the kinetically rate-limiting step for Na2CO3 formation. The en-

ergy barriers for the controlling step of Na2C2O4 and Na2CO3 nucleation were 1.99
Cell Reports Physical Science 3, 100973, July 20, 2022 9



Scheme 1. Electrochemical reaction mechanism of CO2RR in the quasi-solid-state Na-CO2 battery
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and 3.96 eV, respectively, indicating Na2C2O4 to be the thermodynamically favored

discharge product in Na-CO2 batteries due to the presence of Co nanoparticles in

the Co-NCF catalyst.47

The total and partial density of states (TDOS and PDOS, respectively) were calcu-

lated to understand the inherent electron variations causing the high catalytic activ-

ity of the Co nanoparticles further, as shown in Figures 5G and 5H. The TDOS and

PDOS plots show the valence bands of both the up- and down-spin channels in

NCF and Co-NCF near the Fermi level, indicating their metallic properties. A large

amount of charge accumulated on the surface of the Co nanoparticles when they

were embedded in the NCF, indicating a significant interaction between the NCF

and Co nanoparticles, as was also observed in atomic force microscopy (AFM) im-

ages (Figure S28). Additionally, the PDOS indicated that the number of states across

the Fermi energy level of different Co facets within NCF were significantly higher

than those without Co nanoparticles (Figure S29). Thus, embedding Co nanopar-

ticles in NCF enhanced its electrical conductivity. Charge-density differences also

indicated large electron transfers between the Co nanoparticles and the NCF

substrate, indicating strong chemical interactions. Charge transfer from the sub-

strate to the adsorbate leads to effective molecule activation, thus promoting the

subsequent CO2RR.

Electrochemical reaction mechanism

The mechanism of Na2C2O4 generation in the Na-CO2 battery using the Co-NCF

catalyst is shown in Scheme 1. During discharge, Na loses electrons to form Na+

at the anode, reaching the cathode after passing through the sodium super ionic

conductor (NASICON) ceramic separator. Due to the electronic interaction between

Co and the N-doped carbon layer, a large amount of charge accumulated on the sur-

face of the Co nanoparticles, increasing CO2 adsorption and lowering the reaction

energy barrier. Compared with the insulating Na2CO3, it is more favorable to

generate the highly conductive Na2C2O4 during discharge to significantly improve

the capacity and rate performance of the Na-CO2 battery. However, Na2C2O4 is

thermodynamically unstable; therefore, a gel electrolyte was used to prevent its
10 Cell Reports Physical Science 3, 100973, July 20, 2022
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decomposition. In the gel electrolyte, Na2C2O4 was surrounded by imidazole-like

organic cations, significantly reducing the charge on its surface, preventing the

disproportionation reaction of C2O
2�
4 to CO2�

3 , and, finally, ensuring Na2C2O4 as

the final discharge product. Na2C2O4 decomposed easily during charging, leading

to a higher reversible capacity and longer cycle life of the Na-CO2 battery. In

contrast, in aqueous (saturated NaCl) or organic (tetraethylene glycol dimethyl

ether) electrolytes, Na2C2O4 was surrounded by numerous charges due to the

high conductivity of the electrolytes, facilitating the disproportionation reaction to

form Na2CO3. Consequently, it is a feasible strategy to promote Na2C2O4 as the

final discharge product by rational design of the cathode system.

DISCUSSION

In this study, using a Co-NCF catalyst and a gel electrolyte, a novel quasi-solid-state

Na-CO2 battery with Na2C2O4 as the discharge product was constructed. Experi-

mentation and DFT calculations indicated that electron transfer from the NCF to

the adjacent Co nanoparticles promoted CO2 adsorption and lowered the reaction

energy barrier, which facilitates the production of Na2C2O4. Subsequently, the

Na2C2O4 generated in situ was stabilized via interactions with organic cations in

the gel electrolyte, retarding the transformation of Na2C2O4 to Na2CO3. The

quasi-solid-state Na-CO2 battery constructed here exhibited a high specific capacity

of 3,094 mAh g�1 at a current density of 0.1 mA cm�2, a high-rate performance

(1,777 mAh g�1 at a current density of 0.5 mA cm�2), and excellent cycling perfor-

mance of up to 367 cycles (2,200 h). This study could facilitate the future design

and development of all-solid-state Na-CO2 batteries with high stability, safety,

and excellent electrochemical performance.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Feng Liang (liangfeng@kust.edu.cn).

Materials availability

This study did not generate new unique reagents. All chemicals were purchased

from commercial suppliers and used as received without further purification:

2-Methlimidazole (Macklin), Co (NO3)2$6H2O (Aladdin), CNT (Superpure, XFNANO),

Ru/C (Ru 5%, Macklin), and zinc nitrate hexahydrate (99%, Aladdin).

Data and code availability

Data supporting the findings of this paper are available from the corresponding au-

thors upon reasonable request.

Preparation of the Co-NCF catalyst

The Co-NCF materials were synthesized according to a previous publication.48

2-Methlimidazole (7.88 g) was dissolved in a solvent mixture of 80 mL methanol

and 80 mL ethanol to form a clear solution, while Co (NO3)2$6H2O (6.984 g) was dis-

solved separately in the same solvent mixture to form a red solution. Subsequently,

the two solutions were mixed and stirred for 60 s in a beaker and maintained at 30�C
for 20 h to produce a purple precipitate. The precipitate was separated by centrifu-

gation and dried at 80�C for 10 h. The purple ZIF-67 particles were then calcined to

form Co-NCF by heating under an Ar/H2 flow (9:1 in volume) at 350�C for 135 min,

followed by maintaining the temperature at 700�C for 315 min. In order to remove

the large metal clusters and excess free metals produced by the reduction of metal
Cell Reports Physical Science 3, 100973, July 20, 2022 11
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cations during the pyrolysis process, the black powder produced was added to 0.5M

H2SO4 solution for 6 h and centrifuged to obtain the product, washed five times with

distilled water, and dried at 80�C.49,50 For comparison, an NCF was synthesized

without Co by calcining ZIF-8 under the same conditions, and the detailed proced-

ures for the NCF catalyst synthesis are provided in the supplemental experimental

procedures.

Preparation of gel electrolyte

The gel electrolyte was prepared as follows. First, CNT (10 mg) and NaTFSI (330 mg)

were dispersed in an [C2C1im][NTf2] IL (1.5 mL) by ultrasonic dispersion for 60 min.

The CNT/IL mixture was transferred to a centrifuge tube and centrifuged at

9,3003 g (centrifugal force) for 15 min (Figure S30) to obtained gel. A 0.1 g gel elec-

trolyte was used in all quasi-solid-state Na-CO2 batteries.

Preparation of the catalyst layer

The catalyst layer for the quasi-solid-state Na-CO2 battery comprised a gas-diffusion

layer (GDL) and a catalyst layer. The catalyst layer was fabricated as per the following

steps: (1) conductive carbon (15 mg) and PTFE emulsion (10 mL, 5 wt %) were ultra-

sonically mixed for 60 min, followed by immersion of a pre-knocked carbon paper

(Toray 060, Tokyo, Japan) with a diameter of 1 cm in the solution for 30 min, (2)

the treated carbon paper was dried at 60�C and calcined at 450�C for 60 min to

obtain the GDL, and (3) the catalyst layer was prepared by dispersing 15 mg of

Co-NCF, NCF, commercial Ru/C, or N-CNT in ethanol (2 mL) with a drop of PTFE

(0.5 mL, 5 wt %) to obtain catalyst ink. Subsequently, the catalyst ink was homoge-

neously dropped onto the GDL. The catalyst with a mass of 2 mg cm�2 was loaded

on the GDL.

Assembling the quasi-solid-state Na-CO2 battery

In this study, the anolyte was composed of 1 M NaClO4 in the polar aprotic solvent

(1:1) of ethylene carbonate (EC), dimethyl carbonate (DMC), and 1 vol % fluoroethy-

lene carbonate (FEC). A NASICON solid electrolyte with an ionic conductivity of

2.7 3 10�3 S cm�1 at 25�C (Figure S31) was used to separate the anolyte from the

cathode. The cathode, composed of a gel electrolyte, a catalyst layer, and a GDL

(carbon paper), was used to construct the proposed quasi-solid-state Na-CO2 bat-

tery: Na | anolyte | NASICON | gel electrolyte | catalyst layer (Figure S32 and Data

S1). The battery assembly was operated in an Ar-filled high-integrity glove box.

Electrochemical measurement

The assembled quasi-solid-state Na-CO2 batteries were connected to a battery test

station and placed in a glass container filled with pure flowing CO2 (1 atm pressure).

A battery tester (CT2001A, Wuhan LAND Electronics) was used for electrochemical

performance tests at 30�C.

Characterization techniques

XRD (MXP3TA,Mac Science) image of Co-NCFwas carried out using an X-ray diffrac-

tometer equipped with Cu-Ka radiation in the range of 10�–90� with a scanning rate

of 0.02� s�1. Morphologies and microstructures were investigated by SEM (VEGA-

3SBH, TESCAN) using an acceleration voltage of 5.0 kV. TEM (JEM-2100, JEOL)

images were acquired at an accelerating voltage of 300 kV. The SSAs of the as-pre-

pared materials were calculated using N2 adsorption-desorption isotherms (BET;

Quadrasorb-evo, Quantachrome), and the pore-size distribution was calculated us-

ing the BJH method. XPS (PHI5000, PHI) data were collected using a Ka instrument.

A differential scanning calorimeter (MELER/1600H, Mettler Toledo) was used for
12 Cell Reports Physical Science 3, 100973, July 20, 2022
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thermogravimetric analysis (TGA) from room temperature to 700�C in ambient N2

conditions at a scanning rate of 10�Cmin�1. The electrochemical workstation (Solar-

tron 1260A, Ametek) was used to measure the EIS of the gel electrolyte under an

open-circuit voltage, with an alternating current (AC) interference signal of 20 mV

and a frequency range of 0.01–50 kHz. Raman spectra (Renishaw in Via, Renishaw)

were recorded under laser excitation at 514 nm (2.41 eV) over a spectral range of

3,000–800 cm�1 at room temperature. AFM (Dimension Icon, Bruker) images were

recorded in the SCAN Assist mode. The LSV measurements are composed of so-

dium (counter electrode), NASICON, and gel (with or without NaTFSI) as the work

electrode. It was performed from 1 to 5 V with a scan rate of 0.1 mV s�1. The ionic

conductivity of the gel was measured by EIS using an impedance/gain-phase

analyzer (Solartron 1260A, Ametek) with test molds composed of the gel and two

blocking electrodes (stainless steel).51 The ionic conductivity, s (S cm�1), was

calculated using the following equation:

s = L=ðR 3 AÞ
where L (cm) and A (cm2) are the thickness and cross-sectional area of the gel,

respectively, and R (U) is the total electrolyte resistance.
Computational details

All DFT computations were performed using the DMol3 software package, based on

the linear combination of atomic orbitals (LCAO) method.52,53 Electron-ion interac-

tions were described using all-electron potentials. A double numerical polarized

(DNP) basis set was used to expand the wave functions, with orbital cutoffs of 3.7,

3.3, 4.5, and 3.4 Å for C, O, Co, and N, respectively. The Perdew-Burke-Ernzerhof

(PBE) functional was used for the electron-electron exchange and correlation inter-

actions, while van der Waals interactions were described using the dispersion

correction (DFT-D2) method proposed by Grimme.54 In this study, the convergence

criterion for the electronic self-consistent field (SCF) loop was set to 10�6.55 The

atomic structures were optimized until the residual forces were <0.004 Ha Å�1.

The Gibbs free energy of the reaction step is calculated by equation via the finite

difference method with the step size of 0.015 Å:

DG = DE+DZPE � TDS

where DE (eV) is the electronic energy difference based on DFT calculations, DZPE

(eV) is the change in zero-point energy, T is the temperature (equal to 298.15 K

here), and DS (kJ mol�1 K�1) is the change in the entropy. The zero-point energy

and entropy were obtained through vibrational frequencies.
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