1,191 research outputs found

    Recent Missouri Decisions and the Restatement of the Conflict of Laws

    Get PDF

    Modular implicits

    Get PDF
    We present modular implicits, an extension to the OCaml language for ad-hoc polymorphism inspired by Scala implicits and modular type classes. Modular implicits are based on type-directed implicit module parameters, and elaborate straightforwardly into OCaml's first-class functors. Basing the design on OCaml's modules leads to a system that naturally supports many features from other languages with systematic ad-hoc overloading, including inheritance, instance constraints, constructor classes and associated types

    Active-distributed temperature sensing to continuously quantify vertical flow in boreholes

    Get PDF
    We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s−1 elicited a 2.5°C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics

    PMH14 HEALTH CARE EXPENDITURES OF PATIENTS WITH MAJOR DEPRESSIVE DISORDER AND POST TRAUMATIC STRESS DISORDER

    Get PDF
    A computer model is presented that describes soleus H-reflex recruitment as a function of electric stimulus intensity. The model consists of two coupled non-linear transfer functions. The first transfer function describes the activation of muscle spindle (Ia) afferent terminals as a function of the electric stimulus intensity; whereas the second describes the activation of a number of motoneurons as a function of the number of active Ia afferent terminals. The effect of change in these transfer functions on the H-reflex recruitment curve is simulated. In spastic patients, a higher average maximal H-response amplitude is observed in combination with a decreased H-reflex threshold. Vibration of the Achilles tendon reduces the H-reflex amplitude, presumably by reducing the excitatory afferent input. Vibratory inhibition is diminished in spasticity. In the model, the afferent-motoneuron transfer function was modified to represent the possible alterations occurring in spasticity. The simulations show that vibratory suppression of the H-reflex is determined only in part by the inhibition level of the afferent input. With a constant level of presynaptic inhibition, the suppression of reflexes of different sizes may vary. A lowering of the motoneuron activation thresholds in spastic patients will directly contribute to a decrease of vibratory inhibition in spasticit

    Thermal-Plume fibre Optic Tracking (T-POT) test for flow velocity measurement in groundwater boreholes

    No full text
    International audienceWe develop an approach for measuring in-well fluid velocities using point electrical heating combined with spatially and temporally continuous temperature monitoring using Distributed Temperature Sensing (DTS). The method uses a point heater to warm a discrete volume of water. The rate of advection of this plume, once the heating is stopped, equates to the average flow velocity in the well. We conducted Thermal-Plume fibre Optic Tracking (T-POT) tests in a borehole in a fractured rock aquifer with the heater at the same depth and multiple pumping rates. Tracking of the thermal plume peak allowed the spatially varying velocity to be estimated up to 50 m downstream from the heating point, depending on the pumping rate. The T-POT technique can be used to estimate the velocity throughout long intervals provided that thermal dilution due to inflows, dispersion, or cooling by conduction do not render the thermal pulse unresolvable with DTS. A complete flow log may be obtained by deploying the heater at multiple depths, or with multiple point heaters

    Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments

    Get PDF
    The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared to experimental results (weak motion and microtremors). The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping. In this specific area of Nice, a one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium and an isotropic linear viscoelastic solid (standard solid). The thickness of the surface layer, its mechanical properties, its general shape as well as the seismic wave type involved have a great influence on the maximum amplification and the frequency for which it occurs. For real earthquakes, the numerical results are in very good agreement with experimental measurements for each motion component. Two-dimensional basin effects are found to be very strong and are well reproduced numerically

    Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise

    Get PDF
    The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth’s crust driven by human activity, tidal stresses and seismic motion, and from mass density fluctuations in the atmosphere. It is calculated that on Earth’s surface, on a typical day, it will exceed the expected GW signals at frequencies below 10 Hz. The noise will decrease underground by an unknown amount. It is important to investigate and to quantify this expected reduction and its effect on the sensitivity of future detectors, to plan for further improvement strategies. We report about some of these aspects. Analytical models can be used in the simplest scenarios to get a better qualitative and semi-quantitative understanding. As more complete modeling can be done numerically, we will discuss also some results obtained with a finite-element-based modeling tool. The method is verified by comparing its results with the results of analytic calculations for surface detectors. A key point about noise models is their initial parameters and conditions, which require detailed information about seismic motion in a real scenario. We will describe an effort to characterize the seismic activity at the Homestake mine which is currently in progress. This activity is specifically aimed to provide informations and to explore the site as a possible candidate for an underground observatory. Although the only compelling reason to put the interferometer underground is to reduce the Newtonian noise, we expect that the more stable underground environment will have a more general positive impact on the sensitivity.We will end this report with some considerations about seismic and suspension noise

    Coherent instabilities in a semiconductor laser with fast gain recovery

    Get PDF
    We report the observation of a coherent multimode instability in quantum cascade lasers (QCLs), which is driven by the same fundamental mechanism of Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH) instability predicted 40 years ago for ring lasers. The threshold of the observed instability is significantly lower than in the original RNGH instability, which we attribute to saturable-absorption nonlinearity in the laser. Coherent effects, which cannot be reproduced by standard laser rate equations, can play therefore a key role in the multimode dynamics of QCLs, and in lasers with fast gain recovery in general.Comment: 5 pages, 4 figure

    Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi

    Get PDF
    Intraoperative microelectrode recording (MER) for targeting during deep brain stimulation (DBS) procedures has been evaluated over a period of 4 years, in 57 consecutive patients with Parkinson's disease, who received DBS in the subthalamic nucleus (STN-DBS), and 28 consecutive patients with either dystonia (23) or Parkinson's disease (five), in whom the internal segment of the globus pallidus (GPi-DBS) was targeted. The procedure for DBS was a one-stage bilateral stereotactic approach using a combined electrode for both MER and macrostimulation. Up to five micro/macro-electrodes were used in an array with a central, lateral, medial, anterior, and posterior position. Final target location was based on intraoperative test stimulation. For the STN, the central trajectory was chosen for implantation in 50% of the cases and for the globus pallidus internus (GPi) in 57% of the cases. Furthermore, in 64% of the cases, the channel selected for the permanent electrode corresponded with the trajectory having the longest segment of STN MER activity. For the GPi, this was the case in 61%. The mean and standard deviation of the deepest contact point with respect to the magnetic resonance imaging (MRI)-based target for the STN was 2.1 +/- 1.5 mm and for the GPi was -0.5 +/- 1.2 mm. MER facilitates the selection of the final electrode location in STN-DBS and GPi-DBS, and based on the observed MER activity, a pre-selection could be made as to which channel would be the best candidate for macro-test stimulation and at which depth should be stimulated. The choice of the final location is based on intraoperative test stimulation, and it is demonstrated that regularly it is not the central channel that is chosen for implantation. On average, the target as defined by MER activity intensity was in accordance with the MRI-based targets both for the STN and GPi. However, the position of the best MER activity did not necessarily correlate with the locus that produced the most beneficial clinical response on macroelectrode testing intraoperativel
    • 

    corecore