71 research outputs found
Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells.
International audienceExpression of the antimicrobial peptide hCAP18/LL-37 is associated to malignancy in various cancer forms, stimulating cell migration and metastasis. We report that LL-37 induces migration of three cancer cell lines by activating the TRPV2 calcium-permeable channel and recruiting it to pseudopodia through activation of the PI3K/AKT pathway. Ca2+ entry through TRPV2 cooperated with a K+ efflux through the BKCa channel. In a panel of human breast tumors, the expression of TRPV2 and LL-37 was found to be positively correlated. The D-enantiomer of LL-37 showed identical effects as the L-peptide, suggesting that no binding to a specific receptor was involved. LL-37 attached to caveolae and pseudopodia membranes and decreased membrane fluidity, suggesting that a modification of the physical properties of the lipid membrane bilayer was the underlying mechanism of its effects
The Spitzer Survey of the Small Magellanic Cloud: S3MC Imaging and Photometry in the Mid- and Far-Infrared Wavebands
We present the initial results from the Spitzer Survey of the Small
Magellanic Cloud (S3MC), which imaged the star-forming body of the Small
Magellanic Cloud (SMC) in all seven MIPS and IRAC wavebands. We find that the
F_8/F_24 ratio (an estimate of PAH abundance) has large spatial variations and
takes a wide range of values that are unrelated to metallicity but
anticorrelated with 24 um brightness and F_24/F_70 ratio. This suggests that
photodestruction is primarily responsible for the low abundance of PAHs
observed in star-forming low-metallicity galaxies. We use the S3MC images to
compile a photometric catalog of ~400,000 mid- and far-infrared point sources
in the SMC. The sources detected at the longest wavelengths fall into four main
categories: 1) bright 5.8 um sources with very faint optical counterparts and
very red mid-infrared colors ([5.8]-[8.0]>1.2), which we identify as YSOs. 2)
Bright mid-infrared sources with mildly red colors (0.16<[5.8]-[8.0]<0.6),
identified as carbon stars. 3) Bright mid-infrared sources with neutral colors
and bright optical counterparts, corresponding to oxygen-rich evolved stars.
And, 4) unreddened early B stars (B3 to O9) with a large 24 um excess. This
excess is reminiscent of debris disks, and is detected in only a small fraction
of these stars (<5%). The majority of the brightest infrared point sources in
the SMC fall into groups one to three. We use this photometric information to
produce a catalog of 282 bright YSOs in the SMC with a very low level of
contamination (~7%).Comment: Accepted for publication in The Astrophysical Journal. Given the
draconian figure file-size limits implemented in astro-ph, readers are
encouraged to download the manuscript with full quality images from
http://celestial.berkeley.edu/spitzer/publications/s3mcsurvey.pd
Metabolism
Background: Cardiovascular disease is the leading cause of deaths in nonalcoholic steatohepatitis (NASH) patients. Mouse models, while widely used for drug development, do not fully replicate human NASH nor integrate the associated cardiac dysfunction, i.e. heart failure with preserved ejection fraction (HFpEF). To overcome these limitations, we established a nutritional hamster model developing both NASH and HFpEF. We then evaluated the effects of the dual peroxisome proliferator activated receptor alpha/delta agonist elafibranor developed for the treatment of NASH patients. Methods: Male Golden Syrian hamsters were fed for 10 to 20 weeks with a free choice diet, which presents hamsters with a choice between control chow diet with normal drinking water or a high fat/high cholesterol diet with 10% fructose enriched drinking water. Biochemistry, histology and echocardiography analysis were performed to characterize NASH and HFpEF. Once the model was validated, elafibranor was evaluated at 15 mg/kg/day orally QD for 5 weeks. Results: Hamsters fed a free choice diet for up to 20 weeks developed NASH, including hepatocyte ballooning (as confirmed with cytokeratin-18 immunostaining), bridging fibrosis, and a severe diastolic dysfunction with restrictive profile, but preserved ejection fraction. Elafibranor resolved NASH, with significant reduction in ballooning and fibrosis scores, and improved diastolic dysfunction with significant reduction in E/A and E/E' ratios. Conclusion: Our data demonstrate that the free choice diet induced NASH hamster model replicates the human phenotype and will be useful for validating novel drug candidates for the treatment of NASH and associated HfpEF
Transition numérique et pratiques de recherche et d’enseignement supérieur en agronomie, environnement, alimentation et sciences vétérinaires à l’horizon 2040.
Pour citer ce document:Barzman M. (Coord.), Gerphagnon M. (Coord.), Mora O. (Coord.),Aubin-Houzelstein G., Bénard A., Martin C., Baron G.L, Bouchet F., Dibie-Barthélémy J., Gibrat J.F., Hodson S., Lhoste E., Moulier-Boutang Y., Perrot S., Phung F., Pichot C., Siné M., Venin T. 2019. Transition numérique et pratiques de recherche et d’enseignement supérieur en agronomie, environnement, alimentation et sciences vétérinaires à l’horizon 2040.INRA, France, 161pagesTransition numérique et pratiques de recherche et d’enseignement supérieur en agronomie, environnement, alimentation et sciences vétérinaires à l’horizon 2040
Mutations in GDP-mannose pyrophosphorylase b cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan
Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. © 2013 The American Society of Human Genetics.Funding for UK10K was provided by the Wellcome Trust under award WT091310
In Vivo Chromatin Organization of Mouse Rod Photoreceptors Correlates with Histone Modifications
BACKGROUND: The folding of genetic information into chromatin plays important regulatory roles in many nuclear processes and particularly in gene transcription. Post translational histone modifications are associated with specific chromatin condensation states and with distinct transcriptional activities. The peculiar chromatin organization of rod photoreceptor nuclei, with a large central domain of condensed chromatin surrounded by a thin border of extended chromatin was used as a model to correlate in vivo chromatin structure, histone modifications and transcriptional activity. METHODOLOGY: We investigated the functional relationships between chromatin compaction, distribution of histone modifications and location of RNA polymerase II in intact murine rod photoreceptors using cryo-preparation methods, electron tomography and immunogold labeling. Our results show that the characteristic central heterochromatin of rod nuclei is organized into concentric domains characterized by a progressive loosening of the chromatin architecture from inside towards outside and by specific combinations of silencing histone marks. The peripheral heterochromatin is formed by closely packed 30 nm fibers as revealed by a characteristic optical diffraction signal. Unexpectedly, the still highly condensed most external heterochromatin domain contains acetylated histones, which are usually associated with active transcription and decondensed chromatin. Histone acetylation is thus not sufficient in vivo for complete chromatin decondensation. The euchromatin domain contains several degrees of chromatin compaction and the histone tails are hyperacetylated, enriched in H3K4 monomethylation and hypo trimethylated on H3K9, H3K27 and H4K20. The transcriptionally active RNA polymerases II molecules are confined in the euchromatin domain and are preferentially located at the vicinity of the interface with heterochromatin. CONCLUSIONS: Our results show that transcription is located in the most decondensed and highly acetylated chromatin regions, but since acetylation is found associated with compact chromatin it is not sufficient to decondense chromatin in vivo. We also show that a combination of histone marks defines distinct concentric heterochromatin domains
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.
RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
LE MILDIOU DE LA VIGNE EN CHAMPAGNE
REIMS-BU Santé (514542104) / SudocSudocFranceF
- …