86 research outputs found

    ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. <it>Arabidopsis thaliana </it>is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified <it>ESKIMO1 </it>as a key gene involved in plant water economy as well as cold acclimation and salt tolerance.</p> <p>Results</p> <p>All <it>esk1 </it>mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. <it>esk1 </it>mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. <it>esk1 </it>alleles were also shown to be more tolerant to salt stress.</p> <p>Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the <it>esk1 </it>mutant behaves as if it was exposed to drought stress.</p> <p>Conclusion</p> <p>Overall our findings suggest that the <it>ESKIMO1 </it>gene plays a major role in plant response to water shortage and in whole plant water economy. Further experiments are being undertaken to elucidate the function of the ESKIMO1 protein and the way it modulates plant water uptake.</p

    Variation in Dehydration Tolerance, ABA Sensitivity and Related Gene Expression Patterns in D-Genome Progenitor and Synthetic Hexaploid Wheat Lines

    Get PDF
    The wild wheat Aegilops tauschii Coss. has extensive natural variation available for breeding of common wheat. Drought stress tolerance is closely related to abscisic acid (ABA) sensitivity. In this study, 17 synthetic hexaploid wheat lines, produced by crossing the tetraploid wheat cultivar Langdon with 17 accessions of Ae. tauschii, were used for comparative analysis of natural variation in drought tolerance and ABA sensitivity. Ae. tauschii showed wide natural variation, with weak association between the traits. Drought-sensitive accessions of Ae. tauschii exhibited significantly less ABA sensitivity. D-genome variations observed at the diploid genome level were not necessarily reflected in synthetic wheats. However, synthetic wheats derived from the parental Ae. tauschii accessions with high drought tolerance were significantly more tolerant to drought stress than those from drought-sensitive accessions. Moreover, synthetic wheats with high drought tolerance showed significantly higher ABA sensitivity than drought-sensitive synthetic lines. In the hexaploid genetic background, therefore, weak association of ABA sensitivity with drought tolerance was observed. To study differences in gene expression patterns between stress-tolerant and -sensitive lines, levels of two Cor/Lea and three transcription factor gene transcripts were compared. The more tolerant accession of Ae. tauschii tended to accumulate more abundant transcripts of the examined genes than the sensitive accession under stress conditions. The expression patterns in the synthetic wheats seemed to be additive for parental lines exposed to drought and ABA treatments. However, the transcript levels of transcription factor genes in the synthetic wheats did not necessarily correspond to the postulated levels based on expression in parental lines. Allopolyploidization altered the expression levels of the stress-responsive genes in synthetic wheats

    A Focus on Natural Variation for Abiotic Constraints Response in the Model Species Arabidopsis thaliana

    Get PDF
    Plants are particularly subject to environmental stress, as they cannot move from unfavourable surroundings. As a consequence they have to react in situ. In any case, plants have to sense the stress, then the signal has to be transduced to engage the appropriate response. Stress response is effected by regulating genes, by turning on molecular mechanisms to protect the whole organism and its components and/or to repair damage. Reactions vary depending on the type of stress and its intensity, but some are commonly turned on because some responses to different abiotic stresses are shared. In addition, there are multiple ways for plants to respond to environmental stress, depending on the species and life strategy, but also multiple ways within a species depending on plant variety or ecotype. It is regularly accepted that populations of a single species originating from diverse geographic origins and/or that have been subjected to different selective pressure, have evolved retaining the best alleles for completing their life cycle. Therefore, the study of natural variation in response to abiotic stress, can help unravel key genes and alleles for plants to cope with their unfavourable physical and chemical surroundings. This review is focusing on Arabidopsis thaliana which has been largely adopted by the global scientific community as a model organism. Also, tools and data that facilitate investigation of natural variation and abiotic stress encountered in the wild are set out. Characterization of accessions, QTLs detection and cloning of alleles responsible for variation are presented

    Natural Variation in Arabidopsis thaliana as a Tool for Highlighting Differential Drought Responses

    Get PDF
    To test whether natural variation in Arabidopsis could be used to dissect out the genetic basis of responses to drought stress, we characterised a number of accessions. Most of the accessions belong to a core collection that was shown to maximise the genetic diversity captured for a given number of individual accessions in Arabidopsis thaliana. We measured total leaf area (TLA), Electrolyte Leakage (EL), Relative Water Content (RWC), and Cut Rosette Water Loss (CRWL) in control and mild water deficit conditions. A Principal Component Analysis revealed which traits explain most of the variation and showed that some accessions behave differently compared to the others in drought conditions, these included Ita-0, Cvi-0 and Shahdara. This study relied on genetic variation found naturally within the species, in which populations are assumed to be adapted to their environment. Overall, Arabidopsis thaliana showed interesting phenotypic variations in response to mild water deficit that can be exploited to identify genes and alleles important for this complex trait

    ESKIMO1 Disruption in Arabidopsis Alters Vascular Tissue and Impairs Water Transport

    Get PDF
    Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE), i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1) gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid) was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR) spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components

    Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other <it>Populus </it>species.</p> <p>Results</p> <p>Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought.</p> <p>Conclusions</p> <p>In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.</p

    Phosphoproteomic Analysis Reveals that Dehydrins ERD10 and ERD14 are Phosphorylated by SNF1-related Protein Kinase 2.10 in Response to Osmotic Stress

    Get PDF
    SNF1-related protein kinases 2 (SnRK2s) regulate the plant responses to abiotic stresses, especially water deficits. They are activated in plants subjected to osmotic stress, and some of them are additionally activated in response to enhanced concentrations of abscisic acid (ABA) in plant cells. The SnRK2s that are activated in response to ABA are key elements of ABA signaling that regulate plant acclimation to environmental stresses and ABA-dependent development. Much less is known about the SnRK2s that are not activated by ABA, albeit several studies have shown that these kinases are also involved in response to osmotic stress. Here, we show that one of the Arabidopsis thaliana ABA-non-activated SnRK2s, SnRK2.10, regulates not only the response to salinity but also the plant sensitivity to dehydration. Several potential SnRK2.10 targets phosphorylated in response to stress were identified by a phosphoproteomic approach, including the dehydrins ERD10 and ERD14. Their phosphorylation by SnRK2.10 was confirmed in vitro. Our data suggest that the phosphorylation of ERD14 within the S-segment is involved in the regulation of dehydrin subcellular localization in response to stress
    corecore