123 research outputs found

    Monitoring of Tool and Component Wear for Self-Adaptive Digital Twins: A Multi-Stage Approach through Anomaly Detection and Wear Cycle Analysis

    Get PDF
    In today’s manufacturing landscape, Digital Twins play a pivotal role in optimising processes and deriving actionable insights that extend beyond on-site calculations. These dynamic representations of systems demand real-time data on the actual state of machinery, rather than static images depicting idealized configurations. This paper presents a novel approach for monitoring tool and component wear in CNC milling machines by segmenting and classifying individual machining cycles. The method assumes recurring sequences, even with a batch size of 1, and considers a progressive increase in tool wear between cycles. The algorithms effectively segment and classify cycles based on path length, spindle speed and cycle duration. The tool condition index for each cycle is determined by considering all axis signals, with upper and lower thresholds established for quantifying tool conditions. The same approach is adapted to predict component wear progression in machine tools, ensuring robust condition determination. A percentage-based component state description is achieved by comparing it to the corresponding Tool Condition Codes (TCC) range. This method provides a four-class estimation of the component state. The approach has demonstrated robustness in various validation cases

    Ein numerisches Modell zur lokalen Nebelvorhersage. Teil 2: Behandlung von Erdboden und Vegetation

    Get PDF
    Die im Nebelvorhersagemodell PAFOG enthaltenen Modellkomponenten für parametrisierte Wolkenphysik, Strahlung und Sichtweitenbestimmung wurden durch Module zur Beschreibung der Interaktion mit dem Boden und der Vegetation ergänzt. Das auf diese Weise komplettierte Modellsystem PAFOG-V kann dazu verwendet werden, das lokale Auftreten von Strahlungsnebel und niedriger stratiformer Bewölkung vorherzusagen.The paper presents an extension of the model components for parameterized cloud physics, radiation and visibility determination as implemented in the local forecast model PAFOG to include the interaction with the soil and the vegetation. The resulting forecast system PAFOG-V can be used to predict local events of radiation fogs and of low level stratiform clouds

    Loop space, (2,0) theory, and solitonic strings

    Get PDF
    We present an interacting action that lives in loop space, and we argue that this is a generalization of the theory for a free tensor multiplet. From this action we derive the Bogomolnyi equation corresponding to solitonic strings. Using the Hopf map, we find a correspondence between BPS strings and BPS monopoles in four-dimensional super Yang-Mills theory. This enable us to find explicit BPS saturated solitonic string solutions.Comment: 29 pages, v3: section 5 is rewritten and string solutions are found, v4: a new section on general covariance in loop spac

    The Error is the Feature: how to Forecast Lightning using a Model Prediction Error

    Full text link
    Despite the progress within the last decades, weather forecasting is still a challenging and computationally expensive task. Current satellite-based approaches to predict thunderstorms are usually based on the analysis of the observed brightness temperatures in different spectral channels and emit a warning if a critical threshold is reached. Recent progress in data science however demonstrates that machine learning can be successfully applied to many research fields in science, especially in areas dealing with large datasets. We therefore present a new approach to the problem of predicting thunderstorms based on machine learning. The core idea of our work is to use the error of two-dimensional optical flow algorithms applied to images of meteorological satellites as a feature for machine learning models. We interpret that optical flow error as an indication of convection potentially leading to thunderstorms and lightning. To factor in spatial proximity we use various manual convolution steps. We also consider effects such as the time of day or the geographic location. We train different tree classifier models as well as a neural network to predict lightning within the next few hours (called nowcasting in meteorology) based on these features. In our evaluation section we compare the predictive power of the different models and the impact of different features on the classification result. Our results show a high accuracy of 96% for predictions over the next 15 minutes which slightly decreases with increasing forecast period but still remains above 83% for forecasts of up to five hours. The high false positive rate of nearly 6% however needs further investigation to allow for an operational use of our approach.Comment: 10 pages, 7 figure

    Crystalline silicate dust around evolved stars I. The sample stars

    Get PDF
    This is the first paper in a series of three where we present the first comprehensive inventory of solid state emission bands observed in a sample of 17 oxygen-rich circumstellar dust shells surrounding evolved stars. The data were taken with the Short and Long Wavelength Spectrographs on board of the Infrared Space Observatory (ISO) and cover the 2.4 to 195 micron wavelength range. The spectra show the presence of broad 10 and 18 micron bands that can be attributed to amorphous silicates. In addition, at least 49 narrow bands are found whose position and width indicate they can be attributed to crystalline silicates. Almost all of these bands were not known before ISO. We have measured the peak positions, widths and strengths of the individual, continuum subtracted bands. Based on these measurements, we were able to order the spectra in sequence of decreasing crystalline silicate band strength. We found that the strength of the emission bands correlates with the geometry of the circumstellar shell, as derived from direct imaging or inferred from the shape of the spectral energy distribution. This naturally divides the sample into objects that show a disk-like geometry (strong crystalline silicate bands), and objects whose dust shell is characteristic of an outflow (weak crystalline silicate bands). All stars with the 33.6 micron forsterite band stronger than 20 percent over continuum are disk sources. We define spectral regions (called complexes) where a concentration of emission bands is evident, at 10, 18, 23, 28, 33, 40 and 60 micron. We derive average shapes for these complexes and compare these to the individual band shapes of the programme stars.Comment: 41 pages, 20 figures, accepted by A&A. Tables 4 to 20 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A

    The Non-Trapping Degree of Scattering

    Full text link
    We consider classical potential scattering. If no orbit is trapped at energy E, the Hamiltonian dynamics defines an integer-valued topological degree. This can be calculated explicitly and be used for symbolic dynamics of multi-obstacle scattering. If the potential is bounded, then in the non-trapping case the boundary of Hill's Region is empty or homeomorphic to a sphere. We consider classical potential scattering. If at energy E no orbit is trapped, the Hamiltonian dynamics defines an integer-valued topological degree deg(E) < 2. This is calculated explicitly for all potentials, and exactly the integers < 2 are shown to occur for suitable potentials. The non-trapping condition is restrictive in the sense that for a bounded potential it is shown to imply that the boundary of Hill's Region in configuration space is either empty or homeomorphic to a sphere. However, in many situations one can decompose a potential into a sum of non-trapping potentials with non-trivial degree and embed symbolic dynamics of multi-obstacle scattering. This comprises a large number of earlier results, obtained by different authors on multi-obstacle scattering.Comment: 25 pages, 1 figure Revised and enlarged version, containing more detailed proofs and remark

    A description of the first open-source community release of MISTRA-v9.0: a 0D/1D atmospheric boundary layer chemistry model

    Get PDF
    We present MISTRA-v9.0, a one-dimensional (1D) and box (0D) atmospheric chemistry model. The model includes a detailed particle description with regards to the microphysics, gas–particle interactions, and liquid-phase chemistry within particles. Version 9.0 (v9.0) is the first release of MISTRA as an open-source community model. A major review of the code has been performed along with this public version release to improve the user friendliness and platform independence of the model. The purpose of this public release is to maximise the benefit of MISTRA to the community by making the model freely available and easier to use and develop. This paper presents a thorough description of the model characteristics and components. We show some examples of simulations reproducing previous studies with MISTRA, finding that v9.0 is consistent with previous versions

    Global crustal stress pattern based on the world stress map database release 2008

    Get PDF
    The World Stress Map (WSM) project is a global compilation of information on the contemporary crustal stress field from a wide range of stress indicators. The WSM database release 2008 contains 21,750 stress data records that are quality-ranked using an updated and refined quality-ranking scheme. Almost 17,000 of these data records have A–C quality and are considered to record the orientation of maximum horizontal compressional stress SH to within ±25°. As this is almost a triplication of data records compared with the first WSM database release in 1992, we reinvestigate the spatial wave-length of the stress patterns with a statistical analysis on a global 0.5° grid. The resulting smoothed global stress map displays both; the mean SH orientation that follows from the maximum smoothing radius for which the standard deviation is 2000 km) exist for example in North America and NE Asia. These have been used in earlier analyses to conclude that the global stress pattern is primarily controlled by plate boundary forces that are transmitted into the intraplate region. However, our analysis reveals that rather short wave-length of the stress pattern <200 km are quite frequent too, particularly in western Europe, Alaska and the Aleutians, the southern Rocky Mountains, Basin and Range province, Scandinavia, Caucasus, most of the Himalayas and Indonesia. This implies that local stress sources such as density contrasts and active fault systems in some areas have high impact in comparison to plate boundary forces and control the regional stress pattern
    • …
    corecore