164 research outputs found

    NF-κB2 signalling in enteroids modulates enterocyte responses to secreted factors from bone marrow-derived dendritic cells

    Get PDF
    Alternative pathway NF-κB signalling regulates susceptibility towards developing inflammatory bowel disease (IBD), colitis-associated cancer and sepsis-associated intestinal epithelial cell apoptosis and shedding. However, the cell populations responsible for the perturbed alternative pathway NF-κB signalling in intestinal mucosal pathology remain unclear. In order to investigate the contribution of the epithelial compartment, we have tested whether NF-κB2 regulated transcription in intestinal epithelial cells controls the intestinal epithelial response to cytokines that are known to disrupt intestinal barrier permeability. Enteroids were generated from the proximal, middle and distal regions of small intestine (SI) from C57BL/6J wild-type mice and displayed region-specific morphology that was maintained during sub-culture. Enteroids treated with 100 ng/mL TNF were compared with corresponding regions of SI from C57BL/6J mice treated systemically with 0.33 mg/kg TNF for 1.5 h. TNF-induced apoptosis in all regions of the intestine in vitro and in vivo but resulted in Paneth cell degranulation only in proximal tissue-derived SI and enteroids. TNF also resulted in increased enteroid sphericity (quantified as circularity from two-dimensional bright field images). This response was dose and time-dependent and correlated with active caspase-3 immunopositivity. Proximal tissue-derived enteroids generated from Nfκb2−/− mice showed a significantly blunted circularity response following the addition of TNF, IFNγ, lipopolysaccharide (LPS) activated C57BL/6J-derived bone marrow-derived dendritic cells (BMDC) and secreted factors from LPS-activated BMDCs. However, Nfκb1−/− mouse-derived enteroids showed no significant changes in response to these stimuli. In conclusion, the selection of SI region is important when designing enteroid studies as region-specific identity and response to stimuli such as TNF are maintained in culture. Intestinal epithelial cells are at least partially responsible for regulating their own fate by modulating NF-κB2 signalling in response to stimuli known to be involved in multiple intestinal and systemic diseases. Future studies are warranted to investigate the therapeutic potential of intestinal epithelial NF-κB2 inhibition

    A transcriptionally distinct CXCL13+CD103+CD8+ T-cell population is associated with B-cell recruitment and neoantigen load in human cancer

    Get PDF
    The chemokine CXCL13 mediates recruitment of B cells to tumors and is essential for the formation of tertiary lymphoid structures (TLSs). TLSs are thought to support antitumor immunity and are associated with improved prognosis. However, it remains unknown whether TLSs are formed in response to the general inflammatory character of the tumor microenvironment, or rather, are induced by (neo)antigen-specific adaptive immunity. We here report on the finding that the transforming growth factor beta (TGFβ)-dependent CD103+CD8+ tumor-infiltrating T-cell (TIL) subpopulation expressed and produced CXCL13. Accordingly, CD8+ T cells from peripheral blood activated in the presence of TGFβ upregulated CD103 and secreted CXCL13. Conversely, inhibition of TGFβ receptor signaling abrogated CXCL13 production. CXCL13+CD103+CD8+ TILs correlated with B-cell recruitment, TLSs, and neoantigen burden in six cohorts of human tumors. Altogether, our findings indicated that TGFβ plays a non-canonical role in coordinating immune responses against human tumors and suggest a potential role for CXCL13+CD103+CD8+ TILs in mediating B-cell recruitment and TLS formation in human tumors

    Studying the Impact of Trained Staff on Evacuation Scenarios by Agent-Based Simulation

    Get PDF
    Human evacuation experiments can trigger distress, be unethical and present high costs. As a solution, computer simulations can predict the effectiveness of new emergency management procedures. This paper applies multi-agent simulation to measure the influence of staff members with diverse training levels on evacuation time. A previously developed and validated model was extended with explicit mechanisms to simulate staff members helping people to egress. The majority of parameter settings have been based on empirical data acquired in earlier studies. Therefore, simulation results are expected to be realistic. Results show that staff are more effective in complex environments, especially when trained. Not only specialised security professionals but, especially, regular workers of shopping facilities and offices play a significant role in evacuation processes when adequately trained. These results can inform policy makers and crowd managers on new emergency management procedures

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Psychoimmunological effects of dioscorea in ovariectomized rats: role of anxiety level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anxiety levels in rats are correlated with interleukin-2 (IL-2) levels in the brain. The aim of the present study was to investigate the effects of dioscorea (wild yam), a Chinese medicine, on emotional behavior and IL-2 levels in the brain of ovariectomized (OVX) rats.</p> <p>Methods</p> <p>One month after ovariectomy, female Wistar rats were screened in the elevated plus-maze (EPM) test to measure anxiety levels and divided into low anxiety (LA) and high anxiety (HA) groups, which were then given dioscorea (250, 750, or 1500 mg/kg/day) by oral gavage for 27 days and were tested in the EPM on day 23 of administration and in the forced swim test (FST) on days 24 and 25, then 3 days later, the brain was removed and IL-2 levels measured.</p> <p>Results</p> <p>Compared to sham-operated rats, anxiety behavior in the EPM was increased in half of the OVX rats. After chronic dioscorea treatment, a decrease in anxiety and IL-2 levels was observed in the HA OVX rats. Despair behavior in the FST was inhibited by the highest dosage of dioscorea.</p> <p>Conclusion</p> <p>These results show that OVX-induced anxiety and changes in neuroimmunological function in the cortex are reversed by dioscorea treatment. Furthermore, individual differences need to be taken into account when psychoneuroimmunological issues are measured and the EPM is a useful tool for determining anxiety levels when examining anxiety-related issues.</p

    The consumer scam: an agency-theoretic approach

    Get PDF
    Despite the extensive body of literature that aims to explain the phenomenon of consumer scams, the structure of information in scam relationships remains relatively understudied. The purpose of this article is to develop an agency-theoretical approach to the study of information in perpetrator-victim interactions. Drawing a distinction between failures of observation and failures of judgement in the pre-contract phase, we introduce a typology and a set of propositions that explain the severity of adverse selection problems in three classes of scam relationships. Our analysis provides a novel, systematic explanation of the structure of information that facilitates scam victimisation, while also enabling critical scrutiny of a core assumption in agency theory regarding contract design. We highlight the role of scam perpetrators as agents who have access to private information and exercise considerable control over the terms and design of scam relationships. Focusing on the consumer scam context, we question a theoretical assumption, largely taken for granted in the agency literature, that contact design is necessarily in the purview of the uninformed principal

    Genome Degradation in Brucella ovis Corresponds with Narrowing of Its Host Range and Tissue Tropism

    Get PDF
    Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis

    Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces

    Get PDF
    The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix
    corecore