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Using a Temporal-Causal Network
Model for Computational Analysis
of the Effect of Social Media Influencers
on the Worldwide Interest in Veganism

Manon Lisa Sijm, Chelsea Rome Exel and Jan Treur

Abstract Over the years, a clear and steady rise can be seen in the interest in
veganism. Although research has been conducted to determine the reasons why
veganism has grown, ultimately there is still a necessity for further research on how
social networks affect its growth. This paper aims to provide a possible explanation
for the rise in interest, using computational analysis based on a temporal-causal
network model focussing on social contagion. This model portrays a simulation of a
sample size population on Instagram, showing how a social influencer can influence
the opinions of people directly (influencers’ followers) and indirectly (followers
of the influencers’ followers), and how this compares to a situation in which this
influencer is not there.

Keywords Social contagion · Social media · Veganism · Network-oriental
modelling approach · Temporal-causal network

1 Introduction

Over the last years, the number of vegans has noticeably increased. From 2014 to
2018, this number has quadrupled in the UK [13]. While there has been research
studies towards the reasons why people became vegan, it has not yet been estab-
lished how exactly this rise came to be. The main reasons why people become vegan
are health and ethical reasons [11]. McDonald [9] attempted to research how people
learn to become vegetarian or vegan, by conducting a qualitative study. According
to this study, most participants already felt affection for nonhuman animals prior to
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Fig. 1 AGoogle search regarding the interest in vegan spread out over a period of six years, where
100% equals the highest number of searches for this term

becoming vegan, but they became vegan after experiencing one or more catalytic
experiences. These experiences involved information about animal cruelty that was
presented to the participant, which led to further action. After learning more about
animal cruelty, participants eventually made the decision to give up animal products
in their entirety. McDonald argued that openness and the willingness to learn were
salient factors into the decision of becoming vegan. After becoming vegan, the par-
ticipants in this study stated that their vegan lifestyle included the desire of educating
others about animal cruelty [9]. Even though this research provides more insights
into how people become vegan, ultimately it does not explain the substantial rise
of interest in veganism in the last 10 years. As Fig. 1 shows, in 2018 the interest
in ‘vegan’ shows a monotonically increasing trend: it has been strongly increasing
since 2012. The assumption is that people are becoming more aware and learning
more about veganism, which could contribute to the rise in interest of it entirely.

With the rise of the Internet and social media, people have obtainedmore access to
all types of information compared to twenty years ago. Instagram, for example, has
been a popular platform to showand sell products to people, proving to have an impact
on buyers. Posting a picture next to a sales item appears to boost the sale conversions
with a factor of seven [18]. This impact is not only true for sales but also appears
to work for lifestyle changes. Nine out of ten experiments conducted by Maher
et al. [8] showed significant improvements in health behaviour, and it is argued that
behaviour changed because of social network sites. Vaterlaus [17] confirmed this,
by showing that at least 38% of participants showed that their food choices were
influenced by social media. This provided more support for the social ecological
model, which indicates that several factors, including social media, appear to have an
influence on health behaviours [5]. Social influencers especially appear to contribute
to the fact that social media seem to have an impact on health behaviours. Social
influencers are perceived as more appealing because they are arguably considered
more popular than others. This perception of popularity even increased the perceived
opinion leadership of some influencers [4]. This effect was also the case for pictures.
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Pictures with more ‘likes’ were liked even more by participants than other pictures.
This was also detectable within the neural responses in the brain, namely the nucleus
accumbens, where popular pictures showed a greater response in this area [12]. This
could possibly be explained by a persuasion principle of Cialdini; the number of
‘likes’ on a picture provides the opportunity of social proof, which means ‘when a
lot of people are doing something, it is the right thing to do’ [2, 3].

2 The Temporal-Causal Network Model

According to the above-mentioned research, it appears that social media and social
influencers can affect the lifestyle and buying behaviours of their followers. This can
be categorized under social contagion, which can be explained as the spread of belief,
affect or behaviour, where people influence on another, e.g. [1]. To simulate and
analyse this computationally, the network-oriented modelling approach, presented in
[15],was used; see also [16]. This approach canbe considered as a branch in the causal
modelling area which has a long tradition in AI; e.g., see [6, 7, 10]. It distinguishes
itself by exerting a dynamic perspective on causal relations, according to which
causal relations manifest effects over time. These causal relations themselves can
also change over time. The type of network models that are used as a basis for
this is called a temporal-causal network model. These network models are widely
applicable, varying from biological and mental networks to social networks and
beyond [16]. This also includes the social contagion principle.

To analyse the effect of an influencer on the spread of veganism computationally,
an agent-based social contagionmodel was designed. Themodel consists of different
nodes (agents) interacting with each other. The nodes only interact with the nodes
that they are directly connected to. This connection can be bidirectional, which
means that a node can express their opinion to a connected node, but also receive
the opinion from that same node. On the other hand, it can be unidirectional, where
an opinion will either be received or expressed. The nodes can still be influenced
indirectly via some intermediate steps by other nodes that they are not connected
to. The opinion that is communicated in this particular case will regard the nodes’
attitudes towards veganism. These opinions can differ in weight, where 0 is the
lowest weight a node could have and 1 the highest. In this case, a value of 0 would
mean no interest at all, whereas a value of 1 would mean high interest in veganism.
Each node has an activation value, which varies over time. Based on the temporal-
causal network that has been defined, this activation value depends on the interaction
between the agents according to the following three elements: connection weight
ωX,Y , which represents the strength of the connection from state X to state Y, speed
factor ηY , which represents how fast state Y is changing upon causal impact and
combination function cY (..), which combines the causal impacts of other states
on state Y. As there is not much specifically known about how specific agents are
linked to an influencer, a scale-free network approach based on Tapan [14] was
used to represent the population. This is a connected graph, where the majority
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Fig. 2 Conceptual representation of the temporal-causal network model

of the nodes have one or two connections and only a few nodes have a plethora
of connections. A sample size of 50 nodes has been chosen, where one node was
chosen as the influencer (X1). This influencer represents a popular person on social
media who is actively posting about vegan. While looking at the real world, it is
evident that not everyone is directly connected to each other. Therefore, this model
divided all nodes intofive subgroups, representingdifferent clusters of the population.
Subsequently, it is unlikely that all clusters in a population would be influenced
by the same influencer(s). For this reason, the influencing node X1 only impacts
the first two clusters. This way, indirect effects are also presentable in the model.
The conceptual representation of this model can be seen in Fig. 2, where the size
of the nodes represents the number of outgoing nodes (influence) and the colours
represent strongly connected nodes. The conceptual representation of a temporal-
causal network model can be transformed into a numerical representation as shown
in Table 1; see also [15, 16].

The following difference and differential equation for each state Y are obtained:

Y (t + �t) = Y (t) + ηY [cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) − Y (t)]�t

dY (t)/dt = ηY [cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) − Y (t)] (1)

The combination functions that are used to obtain a realistic simulation for the
influence of a social media influencer on the overall interest in veganism are the iden-
tity function id(.) for states with a single impact and the advanced logistic function
alogisticσ ,τ (..) for states with multiple impacts, where σ is a parameter for steepness
and τ a parameter for threshold.

id(V ) = V

alogisticσ,τ (V1, . . . , Vk) =
[

1

1 + e−σ (V1 + · · · + Vk−τ )
− 1

1 + eστ

]
(1 + e−στ )

(2)
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An example of a numerical representation for agent state X14 in difference and
differential equation format is, respectively:

X14(t + �t) = X14(t) + ηX14
[cX14(ωX1,X14X1(t),ωX12,X14X12(t)) − X14(t)]�t

dX14(t)/dt = ηX14
[cX14(ωX1,X14X1(t),ωX12,X14X12(t)) − X14(t)] (3)

with cX14(..) = alogistic100,1(..).

3 Simulation Results

The influence of a social media influencer on the overall interest in veganism of a
population is analysed by using two scenarios. For each scenario, the timescale of
the model is time 70 = 1 year with time 0 = 2012 and �t = 1. Based on Google
search data, we know that the interest in veganism in January 2012 was only 29% of
the population compared to the interest six years later in 2018 (100%). Therefore,
15 people (14.5 rounded up) of the 50 people in this network are starting with an
interest in veganism at time = 0 (2012) and are given an initial state value of Xi(0)
= 1. The remaining people (35) are not interested in veganism at time = 0 and are
given an initial value of Xi(0) = 0. The connection weights in this network are either
0 (state X is not influencing state Y directly), 1 (state X has a direct positive effect
on state Y ) or −1 (state X has a direct negative effect on state Y ). The speed factor
ηY differs for each agent and varies between 0 and 0.1. For each agent Y with a
single incoming connection, the identity combination function is used to estimate
the activation value. For each agent Y with multiple incoming connections, given
the activation values at time t, the advanced logistic combination function is used to
calculate the activation value at time t + �t with steepness (σ ) between 10 and 100,
and threshold (τ ) between 0 and 1.

Scenario 1models the developmentwhen the influence of a socialmedia influencer
on the population is present. In this scenario, agent state X1 with an initial value of 1
has 13outgoing connections and0 incoming connections and is called an ‘influencer’.
The rest of the states have a maximum of 6 outgoing influences. All states together
have an average of 3.32 outgoing influences. The other settings are constructed
according to the description above. The simulation results of the model can be found
on the left side in Fig. 3. In the simulation of the first scenario, it is apparent that the
interest in veganism grows over time. After 6 years (time = 420), every agent state
is interested in veganism, but some agent states rise faster and sooner than others.
This proves to be a realistic process due to personal differences and the strength of
connections between agents.

To get a better view of the overall interest in veganism, the average is derived
from the simulation and the result can be seen on the left side in Fig. 4. This shows
that the average interest in veganism increases from 30 to almost 100% in 6 years.
These results are in line with the expectations we had. If we compare this trend to
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Fig. 3 Simulation of the temporal-causal network model for scenarios 1 (left, with influencer) and
2 (right, without influencer), where each line represents one agent state

Fig. 4 Average interest in veganism of all agents combined over time for scenarios 1 (left, with
influencer) and 2 (right, without influencer)

the worldwide interest in veganism derived from the Google search data and the
literature, we can perceive approximately the same pattern.

Scenario 2 models the same process (with the same settings), but without the
influencer X1. This means that the outgoing connections of X1 are 0 to each state
Y. The simulation results of this adjusted model can be found in Fig. 3 on the right.
Looking at the simulation results of the second scenario, we see that over six years,
most of the people stay either interested in veganism or not interested in veganism.
Only seven people that were initially uninterested in veganism became more inter-
ested over time. There were also seven people that became uninterested in veganism
after previously harbouring interest. The reduced interest in veganism of some peo-
ple arises since they are no longer influenced by the influencer, which leaves room
for an increased influence of other (maybe) non-vegan people in their network. To
obtain a better view of the overall interest in veganism, the average is derived from
the simulation and the result can be seen on the right in Fig. 4. This shows that the
interest in veganism is stationary over the time when the network is not influenced
by the vegan influencer. If we compare this trend with the trend we have gathered in
the first scenario, the influential power of a social influencer becomes visible. These
findings are in accordance with our expectations since we expected the influencer to
have a substantial influence on the overall interest due to social contagion and social
proof.
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4 Verification of the Network Model by Mathematical
Analysis

In order to verify whether the implemented model does what is expected from the
model specification, a mathematical analysis of stationary points was carried out. A
state Y has a stationary point at some time point t if dY (t)/dt = 0. For temporal-
causal networks, there is a simple criterion to check whether there is a stationary
point at t for state Y: a state Y in a temporal-causal network has a stationary point
at time point t only if the speed factor of Y is 0 or aggimpactY (t) = Y (t), where
aggimpactY (t) = cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) (with X1, …, Xk , which are the
states with outgoing connections to Y ).

From scenario 1 shown in Sect. 3, eight stationary points with their time points
t and their state values Xi(t) were identified. To verify the model, these state values
were compared to the values at the same time point t calculated using the right side
of the equation Y (t) = cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) in the above criterion. To
explain the mathematical analysis, the observed state value of agent state X22 at a
stationary point at t = 324 is compared to the value aggimpactY (t) expressed in
the equation above. The agent state X22 has incoming connections of X21, X23 and
X26. The equation for the agent state X22 at t = 324 with combination function
advanced logistic function with σ = 20 and τ = 0.5 is as follows: aggimpactY (t)
= alogisticσ ,τ (V1, …, Vk) with Vi = impactX,Y (t) = ωX,YX(t). Here for the case of
agent state X22 it holds

V1 = impactX21,X22
(324) = 1 × 1 = 1

V2 = impactX23,X22
(324) = −1 × 1 = −1

V3 = impactX26,X22
(324) = 1 × 0.5 = 0.5

Then

aggimpactX22
(324) = alogistic20,0.5(V1, V2, V3)

=
[

1

1 + e−20((1 − 1 + 0.5) − 0.5)
− 1

1 + e20∗0.5

]
(1 + e−20∗0.5)

= 0.500 (4)

The difference between the simulation value for state Y and the value aggim-
pactY (t) is called the deviation, and this portrays the accuracy of the model. If we
compare this state value 0.500 for X22 at t = 324 with the value of aggimpactY (t)
derived from the other state values at t = 324 in the simulation, which is 0.449,
the deviation is 0.500 − 0.449 = 0.001. The state values found in the simulation
and the equations for aggimpactY (t) for X22 and other agent states with a stationary
point can be found in Table 2. The stationary point equations all contain an accuracy
<0.01, which contributes to confidence that the model was implemented in a correct
manner.
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Table 2 Stationary point equation outcomes

State Yi X2 X16 X20 X22 X24 X26 X28 X42

Time point t 406 401 152 324 283 192 397 411

State value Yi(t) 1.000 0.996 0.495 0.499 0.262 0.496 0.996 0.999

aggimpactYi (t) 1.000 1.000 0.500 0.500 0.267 0.500 1.000 1.000

Deviation 0.000 0.004 0.005 0.001 0.005 0.004 0.004 0.001

5 Validation Using Empirical Data and Parameter Tuning

Lastly, comparing the model to the empirical data provided a validation of the
model. This empirical data were retrieved from the Google search data mentioned
in the beginning. To create an accurate model, time points were compared to the
empirical data and the model was adjusted by tuning the parameters. This was
achieved by comparing the average state of the agents in the model that was
retrieved from the output created in MATLAB with the data provided by the
Google search. The number of time points used in the proposed model was n =
420 (420 iterations with �t = 1). Since the time point dimensions did not match
yet with each other, the empirical data were converted into the same number of time
points as the proposed model has. This provided a basis for a detailed and uniform
way of comparison.

First, the empirical data were scaled to the dimensions of the simulation model
(0–420). This means that the initial and final points from the empirical data, which
were 2012-01 and 2018-01, were changed into 0 and 420, respectively. Each month
that lies between 2012 and 2018 is converted to the scale of the simulation model by
the formula: timepoint(t)= timepoint(t − 1)+ 5.83, where t is a specific time point
from the empirical data. The data for the time points that were not known yet were
estimated by interpolation using a third-order polynomial trend line, which provided
a formula to calculate the value for each time point of the model. This third-degree
polynomial formula was as follows (with t = timepoint):

(0.000001 t3 − 0.0002 t2 + 0.0718 t + 27.048)/100 (5)

Following this, the proposed model was compared to the empirical data, which
was done in MATLAB. A sum of squares error SSR of 0.031953 was computed,
which leads to root mean square, RMS = SQRT (0.031953/420) = 0.0087. These
results indicate that the differences between the simulated data and the empirical
data are quite small. However, there are still some differences, which can also be
seen on the left in Fig. 5; in particular everywhere in the time interval the average of
the simulation values is higher than the value of the empirical data, which indicates
that there is room for improvement.

To improve the model and decrease the error, parameter tuning was used to find
more optimal speed factor values. The speed factor of the average state X51 was
1.722 in the proposed model, which is based on the total speed factor values for all
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Fig. 5 Empirical data compared to the data of the proposed model before (left) and after (right)
parameter tuning

Table 3 Results of parameter tuning by exhaustive search

ηX51
1.722 1.700 1.682 1.665 1.648 1.631

SSR 0.0320 0.0279 0.0250 0.0240 0.0251 0.0282

RMS 0.0087 0.0082 0.0077 0.0076 0.0077 0.0081

states. An exhaustive search was used to find the speed factors that best represent
the empirical data, which was executed by lowering the speed factor step by step
for each state with 1% of its value at a time. The total speed factors ηX51

and their
SSR and RMS values for the different options in the search space can be found in
Table 3. Table 3 shows that a total speed factor of 1.665 provides the lowest sum
of squares error (0.0240) and root mean square (0.0076). This means that when the
original value of each speed factor is multiplied by 0.97, this results in the best speed
factor for the proposed model. The right side in Fig. 5 shows the proposed model
after parameter tuning.

6 Discussion

In this paper, a temporal-causal network model concerning the influence of social
media influencers on the overall interest in veganism is introduced. The model uses
the network-oriented modelling approach described in [15, 16] and is based on the
principle of social contagion and findings in the literature regarding social media
and veganism. To verify the model, a mathematical analysis has been performed.
To validate the model, parameter tuning has been performed by comparing it with
empirical data.

The computational analysis presented in this paper provides more insights into
possible reasons why people became vegan and proposed that this could be due to
the rise of social media and vegan social media influencers. There are, however,
some limitations that need to be taken into account while interpreting this model.
The quantitative data that were found to validate the model is the amount of Google
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searches on the word ‘vegan’ over time, interpreted as the interest in veganism over
time. There was no quantitative data available concerning the influence of social
media influencers on their followers, or information on the composition of the net-
work of an influencer. Therefore, this model represents a possible way of how the
growing interest in veganism could have arisen, but it should be noted that this is
one of many possible ways, maybe including ways where social media does not play
an important role. Further research may be needed to determine in more detail the
extent the influence social media influencers have on their followers, and particularly
about the relationships among vegans on social media.
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