10 research outputs found

    Undergraduate antimicrobial stewardship training for pharmacy students: Creating a foundation for containment of antimicrobial resistance in South Africa

    Get PDF
    To the Editor: The inappropriate and excessive use of antimicrobial agents has cultivated the development and progression of antimicrobial resistance worldwide, which has been recognised as a threat to global health and safety.[1] In response to this alarming growth in antimicrobial resistance, antimicrobial stewardship initiatives, which aim to improve the judicious use of antimicrobial agents, have gained global support.[2] The Antimicrobial Resistance Strategy Framework in South Africa (SA) recognises the education of healthcare professionals as a strategy for containment of antimicrobial resistance in SA.[3

    Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers

    Get PDF
    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation

    Protomers of Benzocaine: Solvent and Permittivity Dependence

    Get PDF
    The immediate environment of a molecule can have a profound influence on its properties. Benzocaine, the ethyl ester of para-aminobenzoic acid, which finds an application as a local anesthetic (LA), is found to adopt in its protonated form at least two populations of distinct structures in the gas phase and their relative intensities strongly depend on the properties of the solvent used in the electrospray ionization (ESI) process. Here we combine IR-vibrational spectroscopy with ion mobility-mass spectrometry (IM-MS) to yield gas-phase IR spectra of simultaneously m/z and drift-time resolved species of benzocaine. The results allow for an unambiguous identification of two protomeric species - the N- and O-protonated form. Density functional theory (DFT) calculations link these structures to the most stable solution and gas-phase structures, respectively, with the electric properties of the surrounding medium being the main determinant for the preferred protonation site. The fact that the N-protonated form of benzocaine can be found in the gas phase is owed to kinetic trapping of the solution phase structure during transfer into the experimental setup. These observations confirm earlier studies on similar molecules where N- and O-protonation has been suggested

    A universal avian endogenous real-time reverse transcriptase-polymerase chain reaction control and its application to avian influenza diagnosis and quantification.

    No full text
    &lt;p&gt;Real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) is becoming an established first-line diagnostic assay as well as a precise quantification tool for avian influenza virus detection. However, there remain some limitations. First, we show that the sensitivity of RRT-PCR influenza detection can be 10- to 100-fold inhibited in oropharyngeal and cloacal swabs. Adding 0.5 U of heat-activated Taq DNA polymerase successfully reverses PCR inhibition. Second, an excellent strategy for detecting false negative samples is the coamplification of an internal control from each sample. We developed a universal avian endogenous internal control (bird beta-actin) and apply it to influenza A diagnosis. Moreover, this internal control proves useful as a normalizer control for virus quantification, because beta-actin gene expression does not change in infected vs. uninfected ducks. A combined panel of wild bird cloacal swabs, wild bird tissue samples, experimental duck swabs, and experimental duck and chicken tissue samples was used to validate the endogenous control. The application of an endogenous internal control proves an excellent strategy both for avoiding false negative diagnostic results and for standardizing virus quantification studies.&lt;/p&gt;</p
    corecore