369 research outputs found

    Continuous stellate ganglion block in delayed cerebral ischemia: A possible supplementary approach to traditional therapy?

    Get PDF
    Delayed Cerebral Ischemia (DCI) is a major contributor to morbidity and mortality after SAH. Currently the prevention of vasospasm and DCI relies on nimodipine administration and on maintaining an adequate cerebral perfusion pressure. We report a patient with initial DCI after SAH in which stellate ganglion block (SGB) was performed after nimodipine administration. Firstly the procedure was characterized by a iv and intra-arterial nimodipine administration which did not result into a normal perfusion pattern. Therefore a single-shot stellate ganglion block was performed, as suggested in literature. Because of the not sufficient but promising perfusion improvement, we decided to deliver a continuous ganglion block (cSGB) for 5 days. Consequently a further improvement of the cerebral perfusion on CTPerfusion and Real Time Angiographic Perfusion Assessment was registered. In order to treat cerebral vasospasm, SGB is known to be a further valuable treatment, despite its temporary effect. However the continuous use of SGB during initial DCI has never been described before

    Performance of the Fully Digital FPGA-based Front-End Electronics for the GALILEO Array

    Full text link
    In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. The digital processing of the data from the GALILEO germanium detectors has demonstrated the capability to achieve an energy resolution of 1.53 per mil at an energy of 1.33 MeV.Comment: 5 pages, 6 figures, preprint version of IEEE Transactions on Nuclear Science paper submitted for the 19th IEEE Real Time Conferenc

    Monoamine oxidase A and A/B knockout mice display autistic-like features

    Get PDF
    This is the published version, also available electronically from http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8876069&fileId=S1461145712000715Converging lines of evidence show that a sizable subset of autism-spectrum disorders (ASDs) is characterized by increased blood levels of serotonin (5-hydroxytryptamine, 5-HT), yet the mechanistic link between these two phenomena remains unclear. The enzymatic degradation of brain 5-HT is mainly mediated by monoamine oxidase (MAO)A and, in the absence of this enzyme, by its cognate isoenzyme MAOB. MAOA and A/B knockout (KO) mice display high 5-HT levels, particularly during early developmental stages. Here we show that both mutant lines exhibit numerous behavioural hallmarks of ASDs, such as social and communication impairments, perseverative and stereotypical responses, behavioural inflexibility, as well as subtle tactile and motor deficits. Furthermore, both MAOA and A/B KO mice displayed neuropathological alterations reminiscent of typical ASD features, including reduced thickness of the corpus callosum, increased dendritic arborization of pyramidal neurons in the prefrontal cortex and disrupted microarchitecture of the cerebellum. The severity of repetitive responses and neuropathological aberrances was generally greater in MAOA/B KO animals. These findings suggest that the neurochemical imbalances induced by MAOA deficiency (either by itself or in conjunction with lack of MAOB) may result in an array of abnormalities similar to those observed in ASDs. Thus, MAOA and A/B KO mice may afford valuable models to help elucidate the neurobiological bases of these disorders and related neurodevelopmental problem

    Controlling the dissociation of ligands from the adenosine A(2A) receptor through modulation of salt bridge strength

    Get PDF
    Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge StrengthElena Segala, Dong Guo, Robert K. Y. Cheng, Andrea Bortolato, Francesca Deflorian, Andrew S. Doré, James C. Errey, Laura H. Heitman, Adriaan P. IJzerman, Fiona H. Marshall, and Robert M. CookeHeptares Therapeutics Ltd, Biopark Broadwater Road, Welwyn Garden City AL7 3AX, U.K.Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University P.O. Box 9502, 2300 RA Leiden, the NetherlandsAbstractThe association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized.Medicinal Chemistr

    Brief Report: Sensorimotor Gating in Idiopathic Autism and Autism Associated with Fragile X Syndrome

    Get PDF
    Prepulse inhibition (PPI) may useful for exploring the proposed shared neurobiology between idiopathic autism and autism caused by FXS. We compared PPI in four groups: typically developing controls (n = 18), FXS and autism (FXS+A; n = 15), FXS without autism spectrum disorder (FXS−A; n = 17), and idiopathic autism (IA; n = 15). Relative to controls, the FXS+A (p < 0.002) and FXS−A (p < 0.003) groups had impaired PPI. The FXS+A (p < 0.01) and FXS−A (p < 0.03) groups had lower PPI than the IA group. Prolonged startle latency was seen in the IA group. The differing PPI profiles seen in the FXS+A and IA indicates these groups may not share a common neurobiological abnormality of sensorimotor gating

    From L-Dopa to Dihydroxyphenylacetaldehyde: A Toxic Biochemical Pathway Plays a Vital Physiological Function in Insects

    Get PDF
    One protein in Aedes aegypti, classified into the aromatic amino acid decarboxylase (AAAD) family based on extremely high sequence homology (∌70%) with dopa decarboxylase (Ddc), was biochemically investigated. Our data revealed that this predicted AAAD protein use L-dopa as a substrate, as does Ddc, but it catalyzes the production of 3,4-dihydroxylphenylacetaldehyde (DHPAA) directly from L-dopa and apparently has nothing to do with the production of any aromatic amine. The protein is therefore named DHPAA synthase. This subsequently led to the identification of the same enzyme in Drosophila melanogaster, Anopheles gambiae and Culex quinquefasciatus by an initial prediction of putative DHPAA synthase based on sequence homology and subsequent verification of DHPAA synthase identity through protein expression and activity assays. DHPAA is highly toxic because its aldehyde group readily reacts with the primary amino groups of proteins, leading to protein crosslinking and inactivation. It has previously been demonstrated by several research groups that Drosophila DHPAA synthase was expressed in tissues that produce cuticle materials and apparent defects in regions of colorless, flexible cuticular structures have been observed in its gene mutants. The presence of free amino groups in proteins, the high reactivity of DHPAA with the free amino groups, and the genetically ascertained function of the Drosophila DHPAA synthase in the formation of colorless, flexible cuticle, when taken together, suggest that mosquito and Drosophila DHPAA synthases are involved in the formation of flexible cuticle through their reactive DHPAA-mediated protein crosslinking reactions. Our data illustrate how a seemingly highly toxic pathway can serve for an important physiological function in insects

    Evidence-Based Umbrella Review of 162 Peripheral Biomarkers for Major Mental Disorders

    Get PDF
    The literature on non-genetic peripheral biomarkers for major mental disorders is broad, with conflicting results. An umbrella review of meta-analyses of non-genetic peripheral biomarkers for Alzheimer’s disease, autism spectrum disorder, bipolar disorder (BD), major depressive disorder, and schizophrenia, including first-episode psychosis. We included meta-analyses that compared alterations in peripheral biomarkers between participants with mental disorders to controls (i.e., between-group meta-analyses) and that assessed biomarkers after treatment (i.e., within-group meta-analyses). Evidence for association was hierarchically graded using a priori defined criteria against several biases. The Assessment of Multiple Systematic Reviews (AMSTAR) instrument was used to investigate study quality. 1161 references were screened. 110 met inclusion criteria, relating to 359 meta-analytic estimates and 733,316 measurements, on 162 different biomarkers. Only two estimates met a priori defined criteria for convincing evidence (elevated awakening cortisol levels in euthymic BD participants relative to controls and decreased pyridoxal levels in participants with schizophrenia relative to controls). Of 42 estimates which met criteria for highly suggestive evidence only five biomarker aberrations occurred in more than one disorder. Only 15 meta-analyses had a power >0.8 to detect a small effect size, and most (81.9%) meta-analyses had high heterogeneity. Although some associations met criteria for either convincing or highly suggestive evidence, overall the vast literature of peripheral biomarkers for major mental disorders is affected by bias and is underpowered. No convincing evidence supported the existence of a trans-diagnostic biomarker. Adequately powered and methodologically sound future large collaborative studies are warranted
    • 

    corecore