391 research outputs found

    Basolateral Na-H exchange in the rabbit cortical collecting tubule.

    Full text link

    Tourism‑supported working lands sustain a growing jaguar population in the Colombian Llanos

    Get PDF
    Understanding large carnivore demography on human-dominated lands is a priority to inform conservation strategies, yet few studies examine long-term trends. Jaguars (Panthera onca) are one such species whose population trends and survival rates remain unknown across working lands. We integrated nine years of camera trap data and tourist photos to estimate jaguar density, survival, abundance, and probability of tourist sightings on a working ranch and tourism destination in Colombia. We found that abundance increased from five individuals in 2014 to 28 in 2022, and density increased from 1.88 ± 0.87 per 100 km2 in 2014 to 3.80 ± 1.08 jaguars per 100 km2 in 2022. The probability of a tourist viewing a jaguar increased from 0% in 2014 to 40% in 2020 before the Covid-19 pandemic. Our results are the first robust estimates of jaguar survival and abundance on working lands. Our findings highlight the importance of productive lands for jaguar conservation and suggest that a tourism destination and working ranch can host an abundant population of jaguars when accompanied by conservation agreements and conflict interventions. Our analytical model that combines conventional data collection with tourist sightings can be applied to other species that are observed during tourism activities. Entender los patrones demográficos de los grandes carnívoros al interior de paisajes antrópicos es fundamental para el diseño de estrategias de conservación efectivas. En el Neotrópico, el jaguar (Panthera onca) es una de estas especies cuyas tendencias poblacionales y tasas de supervivencia en paisajes productivos son desconocidas. Para entender mejor estas dinámicas, integramos nueve años de fototrampeo junto a fotos de turistas para estimar la densidad, supervivencia, abundancia y probabilidad de avistamiento de esta especie en una finca ganadera y destino turístico en Colombia. Entre 2014 y 2022 encontramos que la abundancia incrementó de cinco a 28 individuos y la densidad de 1.88 ± 0.87 jaguares/ 100 km2 a 3.80 ± 1.08 jaguares/ 100 km2. La probabilidad de avistamiento por turistas aumentó de 0% en 2014 a 40% en 2020 antes de la pandemia del Covid-19. Nuestros resultados presentan las primeras estimaciones robustas de abundancia y supervivencia de este felino en paisajes antrópicos dónde el manejo de sistemas productivos combinados con turismo e intervenciones para la mitigación del conflicto puede albergar poblaciones abundantes de jaguares, demostrando su importancia para la conservación de esta especie. Nuestro modelo, al combinar datos convencionales con avistamientos, podría ser aplicado a otras especies observadas durante actividades turísticas. Supplemental files attached below

    Effect of MWCNTs on Gastric Emptying in Mice

    Get PDF
    After making model of gastric functional disorder (FD), part of model mice were injected intravenously (i.v.) with oxide multi-walled carbon nanotubes (oMWCNTs) to investigate effect of carbon nanotubes on gastric emptying. The results showed that NO content in stomach, compared with model group, was decreased significantly and close to normal level post-injection with oMWCNTs (500 and 800 μg/mouse). In contrast to FD or normal groups, the content of acetylcholine (Ach) in stomach was increased obviously in injection group with 500 or 800 μg/mouse of oMWCNTs. The kinetic curve of emptying was fitted to calculate gastric motility factor k; the results showed that the k of injection group was much higher than FD and normal. In other words, the gastric motility of FD mice was enhanced via injection with oMWCNTs. In certain dosage, oMWCNTs could improve gastric emptying and motility

    Expression of calcification‐related ion transporters during blue mussel larval development

    Get PDF
    The physiological processes driving the rapid rates of calcification in larval bivalves are poorly understood. Here, we use a calcification substrate‐limited approach (low dissolved inorganic carbon, CT) and mRNA sequencing to identify proteins involved in bicarbonate acquisition during shell formation. As a secondary approach, we examined expression of ion transport and shell matrix proteins (SMPs) over the course of larval development and shell formation. We reared four families of Mytilus edulis under ambient (ca. 1865 μmol/kg) and low CT (ca. 941 μmol/kg) conditions and compared expression patterns at six developmental time points. Larvae reared under low CT exhibited a developmental delay, and a small subset of contigs was differentially regulated between ambient and low CT conditions. Of particular note was the identification of one contig encoding an anion transporter (SLC26) which was strongly upregulated (2.3–2.9 fold) under low CT conditions. By analyzing gene expression profiles over the course of larval development, we are able to isolate sequences encoding ion transport and SMPs to enhance our understanding of cellular pathways underlying larval calcification processes. In particular, we observe the differential expression of contigs encoding SLC4 family members (sodium bicarbonate cotransporters, anion exchangers), calcium‐transporting ATPases, sodium/calcium exchangers, and SMPs such as nacrein, tyrosinase, and transcripts related to chitin production. With a range of candidate genes, this work identifies ion transport pathways in bivalve larvae and by applying comparative genomics to investigate temporal expression patterns, provides a foundation for further studies to functionally characterize the proteins involved in larval calcification

    Potassium Starvation in Yeast: Mechanisms of Homeostasis Revealed by Mathematical Modeling

    Get PDF
    The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method (“the reverse tracking algorithm”) we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF
    corecore