94 research outputs found
v-SNARE actions during Ca²⁺-triggered exocytosis
Assembly of SNARE proteins between opposing membranes mediates fusion of synthetic lipo-somes, but it is unknown whether SNAREs act during exocytosis at the moment of Ca²⁺ increase, providing the molecular force for fusion of secretory vesicles. Here, weshowthatexecution of pre- and postfusional Steps during chromaffin granule exocytosis depends crucially on a short molecular distance between the complex-forming SNARE motif and the transmembrane anchor of the vesicular SNARE protein synaptobrevin II. Extending the juxtamembrane region of synaptobrevin by insertion of flexible "linkers" reduces priming of granules, delays initiation of exocytosis upon stepwise elevation of intracellular calcium, attenuates fluctuations of early fusion pores, and slows rapid expansion of the pore in a linker-length dependent fashion. These observations provide evidence that v-SNARE proteins drive Ca²⁺-triggered membrane fusion at millisecond time scale and support a model wherein continuous molecular pulling by SNAREs guides the vesicle throughout the consecutive stages of exocytosis
The Molecular Switching Mechanism at the Conserved D(E)RY Motif in Class-A GPCRs
The disruption of ionic and H-bond interactions between the cytosolic ends of transmembrane helices TM3 and TM6 of class-A (rhodopsin-like) G protein-coupled receptors (GPCRs) is a hallmark for their activation by chemical or physical stimuli. In the bovine photoreceptor rhodopsin, this is accompanied by proton uptake at Glu134 in the class-conserved D(E)RY motif. Studies on TM3 model peptides proposed a crucial role of the lipid bilayer in linking protonation to stabilization of an active state-like conformation. However, the molecular details of this linkage could not be resolved and have been addressed in this study by molecular dynamics (MD) simulations on TM3 model peptides in a bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). We show that protonation of the conserved glutamic acid alters the peptide insertion depth in the membrane, its side-chain rotamer preferences, and stabilizes the C-terminal helical structure. These factors contribute to the rise of the side-chain pKa (> 6) and to reduced polarity around the TM3 C terminus as confirmed by fluorescence spectroscopy. Helix stabilization requires the protonated carboxyl group; unexpectedly, this stabilization could not be evoked with an amide in MD simulations. Additionally, time-resolved Fourier transform infrared (FTIR) spectroscopy of TM3 model peptides revealed a different kinetics for lipid ester carbonyl hydration, suggesting that the carboxyl is linked to more extended H-bond clusters than an amide. Remarkably, this was seen as well in DOPC-reconstituted Glu134- and Gln134-containing bovine opsin mutants and demonstrates that the D(E)RY motif is a hydrated microdomain. The function of the D(E)RY motif as a proton switch is suggested to be based on the reorganization of the H-bond network at the membrane interface
Docking of Secretory Vesicles Is Syntaxin Dependent
Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones
VAMP3/Syb and YKT6 are required for the fusion of constitutive secretory carriers with the plasma membrane
The cellular machinery required for the fusion of constitutive secretory vesicles with the plasma membrane in metazoans remains poorly defined. To address this problem we have developed a powerful, quantitative assay for measuring secretion and used it in combination with combinatorial gene depletion studies in Drosophila cells. This has allowed us to identify at least three SNARE complexes mediating Golgi to PM transport (STX1, SNAP24/29 and Syb; STX1, SNAP24/29 and YKT6; STX4, SNAP24 and Syb). RNAi mediated depletion of YKT6 and VAMP3 in mammalian cells also blocks constitutive secretion suggesting that YKT6 has an evolutionarily conserved role in this process. The unexpected role of YKT6 in plasma membrane fusion may in part explain why RNAi and gene disruption studies have failed to produce the expected phenotypes in higher eukaryotes
Gene Expression Profiling of a Mouse Model of Pancreatic Islet Dysmorphogenesis
In the past decade, several transcription factors critical for pancreas organogenesis have been identified. Despite this success, many of the factors necessary for proper islet morphogenesis and function remain uncharacterized. Previous studies have shown that transgenic over-expression of the transcription factor Hnf6 specifically in the pancreatic endocrine cell lineage resulted in disruptions in islet morphogenesis, including dysfunctional endocrine cell sorting, increased individual islet size, increased number of peripheral endocrine cell types, and failure of islets to migrate away from the ductal epithelium. The mechanisms whereby maintained Hnf6 causes defects in islet morphogenesis have yet to be elucidated.We exploited the dysmorphic islets in Hnf6 transgenic animals as a tool to identify factors important for islet morphogenesis. Genome-wide microarray analysis was used to identify differences in the gene expression profiles of late gestation and early postnatal total pancreas tissue from wild type and Hnf6 transgenic animals. Here we report the identification of genes with an altered expression in Hnf6 transgenic animals and highlight factors with potential importance in islet morphogenesis. Importantly, gene products involved in cell adhesion, cell migration, ECM remodeling and proliferation were found to be altered in Hnf6 transgenic pancreata, revealing specific candidates that can now be analyzed directly for their role in these processes during islet development.This study provides a unique dataset that can act as a starting point for other investigators to explore the role of the identified genes in pancreatogenesis, islet morphogenesis and mature beta cell function
Morphological docking of secretory vesicles
Calcium-dependent secretion of neurotransmitters and hormones is essential for brain function and neuroendocrine-signaling. Prior to exocytosis, neurotransmitter-containing vesicles dock to the target membrane. In electron micrographs of neurons and neuroendocrine cells, like chromaffin cells many synaptic vesicles (SVs) and large dense-core vesicles (LDCVs) are docked. For many years the molecular identity of the morphologically docked state was unknown. Recently, we resolved the minimal docking machinery in adrenal medullary chromaffin cells using embryonic mouse model systems together with electron-microscopic analyses and also found that docking is controlled by the sub-membrane filamentous (F-)actin. Currently it is unclear if the same docking machinery operates in synapses. Here, I will review our docking assay that led to the identification of the LDCV docking machinery in chromaffin cells and also discuss whether identical docking proteins are required for SV docking in synapses
Modeling dopaminergic and other processes involved in learning from reward prediction error: contributions from an individual differences perspective
Phasic firing changes of midbrain dopamine neurons have been widely characterized as reflecting a reward prediction error (RPE). Major personality traits (e.g., extraversion) have been linked to inter-individual variations in dopaminergic neurotransmission. Consistent with these two claims, recent research (Smillie et al., 2011; Cooper et al., 2014) found that extraverts exhibited larger RPEs than introverts, as reflected in feedback related negativity (FRN) effects in EEG recordings. Using an established, biologically-localized RPE computational model, we successfully simulated dopaminergic cell firing changes which are thought to modulate the FRN. We introduced simulated individual differences into the model: parameters were systematically varied, with stable values for each simulated individual. We explored whether a model parameter might be responsible for the observed covariance between extraversion and the FRN changes in real data, and argued that a parameter is a plausible source of such covariance if parameter variance, across simulated individuals, correlated almost perfectly with the size of the simulated dopaminergic FRN modulation, and created as much variance as possible in this simulated output. Several model parameters met these criteria, while others did not. In particular, variations in the strength of connections carrying excitatory reward drive inputs to midbrain dopaminergic cells were considered plausible candidates, along with variations in a parameter which scales the effects of dopamine cell firing bursts on synaptic modification in ventral striatum. We suggest possible neurotransmitter mechanisms underpinning these model parameters. Finally, the limitations and possible extensions of our general approach are discussed
- …