29 research outputs found

    Methodological advancements for improving performance and generating ensemble ecological niche models

    Full text link
    This study employs spatial filtering of occurrence data with the aim of reducing overfitting to sampling bias in ecological niche models (ENMs). Sampling bias in geographic space leads to localities that may also be biased in environmental space. If so, the model can overfit to those biases. As a preliminary test addressing this issue, we used Maxent, bioclimatic variables, and occurrence localities of a broadly distributed Malagasy tenrec, Microgale cowani (Family Tenrecidae: Subfamily Oryzorictinae). We modeled the abiotically suitable area of this species using three distinct datasets: unfiltered, spatially filtered, and rarefied unfiltered localities. To quantify overfitting and model performance, we calculated evaluation AUC, the difference between calibration and evaluation AUC (= AUCdiff), and omission rates. Models made with the filtered dataset showed lower overfitting and better performance than the other two suites of models, having lower omission rates and AUCdiff, and a higher AUCevaluation. Additionally, the rarefied unfiltered dataset performed better than the unfiltered one for three evaluation metrics, likely because the larger datasets reinforced the biases. These results indicate that spatial filtering of occurrence localities may allow biogeographers to produce better models

    Predicting global invasion risks: a management tool to prevent future introductions

    Get PDF
    Predicting regions at risk from introductions of non-native species and the subsequent invasions is a fundamental aspect of horizon scanning activities that enable the development of more effective preventative actions and planning of management measures. The Asian cyprinid fish topmouth gudgeon Pseudorasbora parva has proved highly invasive across Europe since its introduction in the 1960s. In addition to direct negative impacts on native fish populations, P. parva has potential for further damage through transmission of an emergent infectious disease, known to cause mortality in other species. To quantify its invasion risk, in regions where it has yet to be introduced, we trained 900 ecological niche models and constructed an Ensemble Model predicting suitability, then integrated a proxy for introduction likelihood. This revealed high potential for P. parva to invade regions well beyond its current invasive range. These included areas in all modelled continents, with several hotspots of climatic suitability and risk of introduction. We believe that these methods are easily adapted for a variety of other invasive species and that such risk maps could be used by policy-makers and managers in hotspots to formulate increased surveillance and early-warning systems that aim to prevent introductions and subsequent invasions

    Genome-wide genetic variation coupled with demographic and ecological niche modeling of the dusky-footed woodrat (Neotoma fuscipes) reveal patterns of deep divergence and widespread Holocene expansion across northern California

    No full text
    Understanding how species have responded to past climate change may help refine projections of how species and biotic communities will respond to future change. Here, we integrate estimates of genome-wide genetic variation with demographic and niche modeling to investigate the historical biogeography of an important ecological engineer: the dusky-footed woodrat, Neotoma fuscipes. We use RADseq to generate a genome-wide dataset for 71 individuals from across the geographic distribution of the species in California. We estimate population structure using several model-based methods and infer the demographic history of regional populations using a site frequency spectrum-based approach. Additionally, we use ecological niche modeling to infer current and past (Last Glacial Maximum) environmental suitability across the species' distribution. Finally, we estimate the directionality and possible spatial origins of regional population expansions. Our analyses indicate this species is subdivided into three regionally distinct populations, with the deepest divergence occurring ~1.7 million years ago across the modern-day San Francisco-Bay Delta region; a common biogeographic barrier for the flora and fauna of California. Our models of environmental suitability through time coincide with our estimates of population expansion, with relative long-term stability in the southern portion of the range, and more recent expansion into the northern end of the range. Our study illustrates how the integration of genome-wide data with spatial and demographic modeling can reveal the timing and spatial extent of historic events that determine patterns of biotic diversity and may help predict biotic response to future change

    ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions

    No full text
    Quantitative evaluations to optimize complexity have become standard for avoiding overfitting of ecological niche models (ENMs) that estimate species’ potential geographic distributions. ENMeval was the first R package to make such evaluations (often termed model tuning) widely accessible for the Maxent algorithm. It also provided multiple methods for partitioning occurrence data and reported various performance metrics.Requests by users, recent developments in the field, and needs for software compatibility led to a major redesign and expansion. We additionally conducted a literature review to investigate trends in ENMeval use (2015–2019).ENMeval 2.0 has a new object-oriented structure for adding other algorithms, enables customizing algorithmic settings and performance metrics, generates extensive metadata, implements a null-model approach to quantify significance and effect sizes, and includes features to increase the breadth of analyses and visualizations. In our literature review, we found insufficient reporting of model performance and parameterization, heavy reliance on model selection with AICc and low utilization of spatial cross-validation; we explain how ENMeval 2.0 can help address these issues.This redesigned and expanded version can promote progress in the field and improve the information available for decision-making

    ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions

    No full text
    Quantitative evaluations to optimize complexity have become standard for avoiding overfitting of ecological niche models (ENMs) that estimate species’ potential geographic distributions. ENMeval was the first R package to make such evaluations (often termed model tuning) widely accessible for the Maxent algorithm. It also provided multiple methods for partitioning occurrence data and reported various performance metrics.Requests by users, recent developments in the field, and needs for software compatibility led to a major redesign and expansion. We additionally conducted a literature review to investigate trends in ENMeval use (2015–2019).ENMeval 2.0 has a new object-oriented structure for adding other algorithms, enables customizing algorithmic settings and performance metrics, generates extensive metadata, implements a null-model approach to quantify significance and effect sizes, and includes features to increase the breadth of analyses and visualizations. In our literature review, we found insufficient reporting of model performance and parameterization, heavy reliance on model selection with AICc and low utilization of spatial cross-validation; we explain how ENMeval 2.0 can help address these issues.This redesigned and expanded version can promote progress in the field and improve the information available for decision-making
    corecore