44 research outputs found

    Theoretical calculations based on real topography of the maximum deep-water flow through the Jungfern Passage

    Get PDF
    A method for theoretically calculating the maximum transport through a strait, using the actual topography, is presented. The study is conducted within the framework of rotating hydraulics. The results are used for estimating the amount of North Atlantic Deep Water flowing through the Jungfern Passage into the Caribbean Sea. These appraisals are compared with previous theoretical estimates, for which a rectangular bottom profile has been used, and with transport calculations based on observations

    Is the Faroe Bank Channel overflow hydraulically controlled?

    Get PDF
    Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 2340-2349, doi:10.1175/JPO2969.1.The overflow of dense water from the Nordic Seas through the Faroe Bank Channel (FBC) has attributes suggesting hydraulic control—primarily an asymmetry across the sill reminiscent of flow over a dam. However, this aspect has never been confirmed by any quantitative measure, nor is the position of the control section known. This paper presents a comparison of several different techniques for assessing the hydraulic criticality of oceanic overflows applied to data from a set of velocity and hydrographic sections across the FBC. These include 1) the cross-stream variation in the local Froude number, including a modified form that accounts for stratification and vertical shear, 2) rotating hydraulic solutions using a constant potential vorticity layer in a channel of parabolic cross section, and 3) direct computation of shallow water wave speeds from the observed overflow structure. Though differences exist, the three methods give similar answers, suggesting that the FBC is indeed controlled, with a critical section located 20–90 km downstream of the sill crest. Evidence of an upstream control with respect to a potential vorticity wave is also presented. The implications of these results for hydraulic predictions of overflow transport and variability are discussed.The Faroe Bank Channel experiment was supported by NSF Grant OCE-9906736. JBG gratefully acknowledges the support of the NOAA/ UCAR Climate and Global Change Postdoctoral Program and NSF Grant OCE-9985840. Author Price was supported in part by the U.S. Office of Naval Research through Grant N00014-04-1-0109

    On the effective capacity of the dense-water reservoir for the Nordic Seas overflow : some effects of topography and wind stress

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 418–431, doi:10.1175/JPO-D-12-087.1.The overflow of the dense water mass across the Greenland–Scotland Ridge (GSR) from the Nordic Seas drives the Atlantic meridional overturning circulation (AMOC). The Nordic Seas is a large basin with an enormous reservoir capacity. The volume of the dense water above the GSR sill depth in the Nordic Seas, according to previous estimates, is sufficient to supply decades of overflow transport. This large capacity buffers overflow’s responses to atmospheric variations and prevents an abrupt shutdown of the AMOC. In this study, the authors use a numerical and an analytical model to show that the effective reservoir capacity of the Nordic Seas is actually much smaller than what was estimated previously. Basin-scale oceanic circulation is nearly geostrophic and its streamlines are basically the same as the isobaths. The vast majority of the dense water is stored inside closed geostrophic contours in the deep basin and thus is not freely available to the overflow. The positive wind stress curl in the Nordic Seas forces a convergence of the dense water toward the deep basin and makes the interior water even more removed from the overflow-feeding boundary current. Eddies generated by the baroclinic instability help transport the interior water mass to the boundary current. But in absence of a robust renewal of deep water, the boundary current weakens rapidly and the eddy-generating mechanism becomes less effective. This study indicates that the Nordic Seas has a relatively small capacity as a dense water reservoir and thus the overflow transport is sensitive to climate changes.This study has been supported by National Science Foundation (OCE0927017,ARC1107412).2013-08-0

    Generalized conditions for hydraulic criticality of oceanic overflows

    Get PDF
    Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 1782–1800, doi:10.1175/JPO2788.1.Two methods for assessing the hydraulic criticality of an observed or modeled overflow are discussed. The methods are valid for single-layer deep flows with arbitrary potential vorticity and cross section. The first method is based on a purely steady view in which the flow at a given section is divided up into a group of “streamtubes.” A hydraulic analysis requires an extension of Gill’s functional formulation to systems with many degrees of freedom. The general form of the critical condition and associated compatibility condition for such a system are derived and applied to the streamtube model. As an aside, it is shown by example that Gill’s original critical condition can fail to capture all possible critical states, but that this problem is fixed when the multivariable approach is used. It is also shown how Gill’s method can be applied to certain dispersive or dissipative systems. The second method of assessing criticality involves direct calculation of linear, long-wave speeds using a time-dependent version of the streamtube model. This approach turns out to be better suited to the analysis of geophysical datasets. The significance of the local Froude number F is discussed. It is argued that F must take on the value unity at some point across a critical section.This work was supported by National Science Foundation Grant OCE-0132903 and the Office of Naval Research under Grant N00014-01-1- 0167

    Model studies of dense water overflows in the Faroese Channels Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17-20 June 2013

    Get PDF
    The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with the experimental observations and measurements. In addition, the comparisons show that strong temporal variability in the predicted outflow pathways and circulations have a strong influence in regulating the Faroe Bank Channel and Wyville-Thomson Ridge overflows, as well as in determining the overall response in the Faroese Channels to changes in the Faroe-Shetland Channel inlet boundary conditions. © 2014 Springer-Verlag Berlin Heidelberg

    The mediterranean overflow in the Gulf of Cadiz: a rugged journey

    Get PDF
    The pathways and transformations of dense water overflows, which depend on small-scale interactions between flow dynamics and erosional-depositional processes, are a central piece in the ocean's large-scale circulation. A novel, high-resolution current and hydrographic data set highlights the intricate pathway travelled by the saline Mediterranean Overflow as it enters the Atlantic. Interaction with the topography constraints its spreading. Over the initial 200 km west of the Gibraltar gateway, distinct channels separate the initial gravity current into several plunging branches depth-sorted by density. Shallow branches follow the upper slope and eventually detach as buoyant plumes. Deeper branches occupy mid slope channels and coalesce upon reaching a diapiric ridge. A still deeper branch, guided by a lower channel wall marked by transverse furrows, experiences small-scale overflows which travel downslope to settle at mid-depths. The Mediterranean salt flux into the Atlantic has implications for the buoyancy balance in the North Atlantic. Observations on how this flux enters at different depth levels are key to accurately measuring and understanding the role of Mediterranean Outflow in future climate scenarios.project INGRES3 [CTM2010-21229]; project STOCA (IEO); project PESCADIZ (IEO); project INDEMARES [LIFE07 NAT/E/000732+]; project MOC2 [CTM2008-06438-C02-01]; project MED-OUTFLOW [CTM2008-03422-E/MAR, CTM2010-11488-E]; project PELCOSAT (IEO); project SEMANE; project DILEMA [CTM2014-59244-C3-2-R]; project INPULSE [CTM2016-75129-C3-1-R]; SISMER data center; PANGEA data center; IEO data center; ICES data center; BODC data center; NOAA data center; CONTOURIBER project [CTM2008-06399-C04-01/MAR]info:eu-repo/semantics/publishedVersio

    Transport and dynamics of the Panay Sill overflow in the Philippine Seas

    Get PDF
    Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2679–2695, doi:10.1175/2010JPO4395.1.Observations of stratification and currents between June 2007 and March 2009 reveal a strong overflow between 400- and 570-m depth from the Panay Strait into the Sulu Sea. The overflow water is derived from approximately 400 m deep in the South China Sea. Temporal mean velocity is greater than 0.75 m s−1 at 50 m above the 570-m Panay Sill. Empirical orthogonal function analysis of a mooring time series shows that the flow is dominated by the bottom overflow current with little seasonal variance. The overflow does not descend below 1250 m in the Sulu Sea but rather settles above high-salinity deep water derived from the Sulawesi Sea. The mean observed overflow transport at the sill is 0.32 × 106 m3 s−1. The observed transport was used to calculate a bulk diapycnal diffusivity of 4.4 × 10−4 m2 s−1 within the Sulu Sea slab (575–1250 m) ventilated from Panay Strait. Analysis of Froude number variation across the sill shows that the flow is hydraulically controlled. A suitable hydraulic control model shows overflow transport equivalent to the observed overflow. Thorpe-scale estimates show turbulent dissipation rates up to 5 × 10−7 W kg−1 just downstream of the supercritical to subcritical flow transition, suggesting a hydraulic jump downstream of the sill.This work was supported by the Office of Naval Research Grant N00014-09-1-0582 to Lamont-Doherty Earth Observatory of Columbia University; Grants ONR-13759000 and N00014-09-1-0582 to the Woods Hole Oceanographic Institution; Grant ONR-N00014-06-1-0690 to Scripps Institute of Oceanography; and a National Defense Science and Engineering Graduate Fellowship

    Structure and variability of the Denmark Strait Overflow: Model and observations

    Get PDF
    We report on a combined modeling and observational effort to understand the Denmark Strait Overflow (DSO). Four cruises over the course of 3 years mapped hydrographic properties and velocity fields with high spatial resolution. The observations reveal the mean path of the dense water, as well as the presence of strong barotropic flows, energetic variability, and strong bottom friction and entrainment. A regional sigma coordinate numerical model of interbasin exchange using realistic bottom topography and an overflow forced only by an upstream reservoir of dense fluid is compared with the observations and used to further investigate these processes. The model successfully reproduces the volume transport of dense water at the sill, as well as the 1000-m descent of the dense water in the first 200 km from the sill and the intense eddies generated at 1–3 day intervals. Hydraulic control of the mean flow is indicated by a region supercritical to long gravity waves in the dense layer located approximately 100 km downstream of the sill in both model and observations. In addition, despite the differences in surface forcing, both model and observations exhibit similar transitions from mostly barotropic flow at the sill to a bottom-trapped baroclinic flow downstream, indicating the dominant role of the overflow in determining the full water column dynamics

    Review of the late Quaternary stratigraphy of the northern Gulf of Cadiz continental margin:New insights into controlling factors and global implications

    Get PDF
    Over the past decades, the northern Gulf of Cadiz has been the focus of a wide range of late Quaternary seismic and sequence stratigraphic studies, either addressing the slope contourite depositional system (CDS), or the development of the continental shelf. Yet, high-resolution seismic data bridging between these domains and age information have remained sparse. This study, based on new high-resolution reflection seismic profiles calibrated to IODP Expedition 339 sites U1386/U1387, now presents an updated stratigraphic framework, that integrates (for the first time) the late Quaternary records of the northern Gulf of Cadiz middle slope to shelf off the Guadiana River. Seismic stratigraphic analysis of the stacking, depocenter distribution, stratal architecture and facies of the seismic (sub-)units reveals the influence of similar to 100 kyr sea-level variations paced by Milankovitch (eccentricity) cycles, tectonics (manifesting as two pulses of uplift and margin progradation), sediment supply and bottom current activity. This work furthermore contributes to the application and understanding of high-resolution, late Quaternary sequence stratigraphy. Firstly, the proposed sequence stratigraphic interpretation shows that adaptations to the basic models are required to integrate the shelf and slope record, and to account for the presence of a significant alongslope (bottom current-controlled) component. Secondly, the results confirm that the sequences are dominantly composed of regressive deposits, whereas the preservation of transgressive to highstand deposits is more irregular. Significantly, the common assumption that successive major glacial lowstands are consistently recorded as well-marked, shelf-wide erosional unconformities, is demonstrated to be occasionally invalid, as tectonics can obliterate this one-to-one relationship

    Wave powered desalination system -technology transfer from a SwedishUniversity to South Africa

    No full text
    Fresh water scarcity is a problem that is becoming increasingly important to solve. There areseveral geographical locations around the world that suffer from a shortage of clean water. In South Africa, there are daily rations on how much water a household is allowed to use. AtUppsala University, a technology where a desalination plant is powered by wave energy is being developed. Transferring a technology such as the wave powered desalination technologyinvolves several steps and stake-holders. In this thesis, the success-factors and barriers for such a transfer is being investigated by reviewing relevant literature and interviewing actors whosupport, affect or work closely with processes. Among the important factors for the success of the technology transfer we found that there is a need of having a strong and diverse team, toparticipate in societal activities, to have a working prototype and to hire an experienced business-professional. Furthermore, to assess whether or not the wave climate outside of CapePoint is suitable for operating a wave energy converter (WEC), available wave data was analysed. To put the converted energy in context we examined how many WECs would berequired to power the desalination plant in order to daily generate fresh water to a population of 5000 inhabitants. The energy in the waves varies over the year, and thus also the number ofWECs. To secure enough fresh water 15 WECs are required
    corecore