82 research outputs found

    Submicron active-passive integration for InP-based membranes on silicon

    Get PDF
    The high vertical index contrast and the small thickness of thin InP-based membrane structures bonded with BCB on Silicon allow the realization of very small devices. To make photonic integrated circuits with both passive and active components in these membranes, active-passive integration on a small scale is essential. In this paper we will present our results on sub-micrometer active areas for membrane applications

    Sub-micrometer active-passive integration for InP-based membranes on silicon

    Get PDF
    The high vertical index contrast and the small thickness of InP-based membrane structures bonded with BCB on Silicon allow the realization of very small devices. Since photonic integrated circuits consist of both passive and active components, a successful active-passive integration with sub-micrometer active regions is an essential step. In this paper we will present our results on active-passive integration with sub-micrometer active areas. The interference of active and passive area shows a good quality in terms of morphology. Moreover we find that in the sub-micrometer size active area, the degradation of the material(InGaAsP QWs) due to clean room processing is limited

    Sub-micrometer active-passive integration for InP-based membranes on silicon

    Get PDF
    The high vertical index contrast and the small thickness of InP-based membrane structures bonded with BCB on Silicon allow the realization of very small devices. Since photonic integrated circuits consist of both passive and active components, a successful active-passive integration with sub-micrometer active regions is an essential step. In this paper we will present our results on active-passive integration with sub-micrometer active areas. The interference of active and passive area shows a good quality in terms of morphology. Moreover we find that in the sub-micrometer size active area, the degradation of the material(InGaAsP QWs) due to clean room processing is limited

    Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    Get PDF
    We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index \simeq 1 + (E/M_{QGn})^n, n = 1,2. Parametrizing the delay between gamma-rays of different energies as \Delta t =\pm\tau_l E or \Delta t =\pm\tau_q E^2, we find \tau_l=(0.030\pm0.012) s/GeV at the 2.5-sigma level, and \tau_q=(3.71\pm2.57)x10^{-6} s/GeV^2, respectively. We use these results to establish lower limits M_{QG1} > 0.21x10^{18} GeV and M_{QG2} > 0.26x10^{11} GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.Comment: 12 pages, 3 figures, Phys. Lett. B, reflects published versio

    Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum

    Get PDF
    Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z=0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, ggammaa<2.1×10-11GeV-1 for an ALP mass between 15 and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic fieldFil: Medina, Maria Clementina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: H.E.S. S. collaboration

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Spectroscopic investigation of refractory molecules produced by laser vaporization

    No full text
    In classical ovens, vapour pressure of small molecules including refractory compounds is generally too weak to undertake their spectroscopic characterization in the gas phase. Laser sources as they allow any material to be vaporized whatever its melting point, bring a satisfactory answer to this problem. We designed a source of this type with the aim to undertake the spectroscopic characterization of small molecules including carbon or nitrogen together with a metal of large astrophysical abundance (Al, Mg, Na, Fe). The first mass spectra of neutral molecules as well as ions produced by this source are presented in this paper

    A Bayesian Optimisation Workflow for Field Development Planning Under Geological Uncertainty

    No full text
    Field development planning using reservoir models is a key step in the field development process. Numerical optimisation of specific field development strategies is often used to aid planning. Bayesian Optimisation is a popular optimisation method that has previously been applied to this problem. However, reservoir models can have a high degree of geological uncertainty associated with them, even after history matching. It is important to be able to perform optimisation that accounts for this uncertainty. To date, limited attention has been given to Bayesian Optimisation of field development strategies under geological uncertainty. Much of the recent work in this area has focused on Ensemble Optimisation methods. These naturally handle geological uncertainty using ensembles of geological realisations. This can result in a high computational cost, as large ensembles are required to capture the geological uncertainty. Bayesian Optimisation offers an alternative solution using probabilistic surrogate or proxy models that can capture the geological uncertainty. However, incorporating geological uncertainty into proxy models and using those models in a Bayesian Optimisation loop remains a challenging task. Further, the effect of the additional proxy model uncertainty on optimisation results has not been well studied. We propose a Bayesian Optimisation workflow comprising a Stochastic Bayes Linear proxy model and a combination of experimental and sequential design techniques. The workflow is designed to include a combination of static and dynamic uncertainties, with a new geological realisation generated and used to simulate fluid flow during each run of the model. The workflow is demonstrated by optimising several field development strategies in a synthetic North Sea reservoir model. The ability of the workflow to locate optima and correctly account for the geological uncertainty is studied and the computational cost is quantified. The performance and practical implications of the proposed approach are discussed. These are important in designing an accurate and computationally efficient optimisation workflow under geological uncertainty and, ultimately, are factors in developing decision support tools for field development
    corecore