1,891 research outputs found
Recommended from our members
The organisation and functions of local Ca<sup>2+</sup> signals
Calcium (Ca2+) is a ubiquitous intracellular messenger, controlling a diverse range of cellular processes, such as gene transcription, muscle contraction and cell proliferation. The ability of a simple ion such as Ca2+ to play a pivotal role in cell biology results from the facility that cells have to shape Ca2+ signals in space, time and amplitude. To generate and interpret the variety of observed Ca2+ signals, different cell types employ components selected from a Ca2+ signalling 'toolkit', which comprises an array of homeostatic and sensory mechanisms. By mixing and matching components from the toolkit, cells can obtain Ca2+ signals that suit their physiology. Recent studies have demonstrated the importance of local Ca2+ signals in defining the specificity of the interaction of Ca2+ with its targets. Furthermore, local Ca2+ signals are the triggers and building blocks for larger global signals that propagate throughout cells
Loading fluorescent Ca<sup>2+</sup> indicators into living cells
Small-molecule fluorescent Ca2+ reporters are the most widely used tools in the field of Ca2+ signaling. The excellent spatial and temporal resolution afforded by fluorescent reporters has driven the understanding of Ca2+ as a messenger in many different cell types. In many situations, the cellular loading and monitoring of fluorescent Ca2+ indicators is quite trivial. However, there are numerous pitfalls that require consideration to ensure that optimal data are recorded. Fluorescent Ca2+ indicators have carboxylic acid groups for binding of Ca2+. Because these “free-acid” forms of the indicators are hydrophilic they cannot readily cross cell membranes and need to be introduced into cells using techniques such as microinjection, pinocytosis, or diffusion from a patch pipette. However, the most convenient and widely used method for loading indicators into cells is as hydrophobic compounds in which the carboxylic acid groups are esterified (commonly as acetoxymethyl [AM] or acetate esters). The ester versions of the indicators permeate the plasma membrane. The Ca2+-sensitive, free-acid form of the indicator is liberated following hydrolysis of the ester groups by intracellular esterases
Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation
Neural stem cells can generate in vitro progenitors of the three main cell lineages found in the CNS. The signaling pathways underlying the acquisition of differentiated phenotypes in these cells are poorly understood. Here we tested the hypothesis that Ca2+ signaling controls differentiation of neural precursors. We found low-frequency global and local Ca2+ transients occurring predominantly during early stages of differentiation. Spontaneous Ca2+ signals in individual precursors were not synchronized with Ca2+ transients in surrounding cells. Experimentally induced changes in the frequency of local Ca2+signals and global Ca2+ rises correlated positively with neurite outgrowth and the onset of GABAergic neurotransmitter phenotype, respectively. NMDA receptor activity was critical for alterations in neuronal morphology but not for the timing of the acquisition of the neurotransmitter phenotype. Thus, spontaneous Ca2+ signals are an intrinsic property of differentiating neurosphere-derived precursors. Their frequency may specify neuronal morphology and acquisition of neurotransmitter phenotype
Oncogenic K-Ras suppresses IP<sub>3</sub>-dependent Ca<sup>2+</sup> release through remodeling of IP<sub>3</sub>Rs isoform composition and ER luminal Ca<sup>2+</sup> levels in colorectal cancer cell lines
The GTPase Ras is a molecular switch engaged downstream of G-protein coupled receptors and receptor tyrosine inases that controls multiple cell fate-determining signalling athways. Ras signalling is frequently deregulated in cancer underlying associated changes in cell phenotype. Although Ca2+ signalling pathways control some overlapping functions with Ras, and altered Ca2+ signalling pathways are emerging as important players in oncogenic transformation, how Ca2+ signalling is remodelled during transformation and whether it has a causal role remains unclear. We have investigated Ca2+ signalling in two human colorectal cancer cell lines and their isogenic derivatives in which the mutated K-Ras allele (G13D) has been deleted by homologous recombination. We show that agonist-induced Ca2+ release from intracellular stores is enhanced by loss of K-RasG13D through an increase in the ER store content and a modification of IP3R subtype abundance. Consistently, uptake of Ca2+ into mitochondria and sensitivity to apoptosis was enhanced as a result of KRasG13D loss. These results suggest that suppression of Ca2+ signalling is a common response to naturally occurring levels of K-RasG13D that contributes to a survival
advantage during oncogenic transformation
Alzheimer’s disease-associated peptide Aβ<sub>42</sub> mobilizes ER Ca<sup>2+</sup> via InsP<sub>3</sub>R-dependent and -independent mechanisms
Dysregulation of Ca2+ homeostasis is considered to contribute to the toxic action of the Alzheimer’s Disease (AD) associated Amyloid β-peptide (Aβ). Ca2+ fluxes across the plasma membrane and release from intracellular stores have both been reported to underlie the Ca2+ fluxes induced by Aβ42. Here, we investigated the contribution of Ca2+ release from the endoplasmic reticulum (ER) to the effects of Aβ42 upon Ca2+ homeostasis and the mechanism by which Aβ42 elicited these effects. Consistent with previous reports, application of soluble oligomeric forms of Aβ42 exhibited Ca2+ mobilizing properties. The Aβ42-stimulated Ca2+ signals persisted in the absence of extracellular Ca2+ indicating a significant contribution of Ca2+ release from the ER Ca2+ store to the generation of these signals. Moreover, inositol 1,4,5-trisphosphate (InsP3) signaling contributed to Aβ42-stimulated Ca2+ release. The Ca2+ mobilizing effect of Aβ42 was also observed when applied to permeabilized cells
deficient in InsP3 receptors revealing an additional direct effect of internalized Aβ42 upon the ER, and a mechanism for induction of toxicity by intracellular Aβ42
Attitudes of Doctor of Pharmacy Students Toward the Application of Social and Administrative Pharmacy in Clinical Practice
Over the past decade, dramatic changes have occurred in the education of pharmacists. A significant factor in this change has been the introduction of clinical pharmacy. The emerging role of the clinical pharmacist has forced educators to take a second look at the relevance of the pharmacy curriculum. In fact, many of the pharmacy disciplines have re-oriented their specific knowledge objectives to meet the needs of today\u27s clinical practitioners
Sensitisation waves in a bidomain fire-diffuse-fire model of intracellular Ca²⁺ dynamics
We present a bidomain threshold model of intracellular calcium (Ca²⁺) dynamics in which, as suggested by recent experiments, the cytosolic threshold for Ca²⁺ liberation is modulated by the Ca²⁺ concentration in the releasing compartment. We explicitly construct stationary fronts and determine their stability using an Evans function approach. Our results show that a biologically motivated choice of a dynamic threshold, as opposed to a constant threshold, can pin stationary fronts that would otherwise be unstable. This illustrates a novel mechanism to stabilise pinned interfaces in continuous excitable systems. Our framework also allows us to compute travelling pulse solutions in closed form and systematically probe the wave speed as a function of physiologically important parameters. We find that the existence of travelling wave solutions depends on the time scale of the threshold dynamics, and that facilitating release by lowering the cytosolic threshold increases the wave speed. The construction of the Evans function for a travelling pulse shows that of the co-existing fast and slow solutions the slow one is always unstable
Recommended from our members
Calcium puffs are generic InsP<sub>3</sub>-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses
Elementary Ca2+ signals, such as "Ca2+ puffs", which arise from the activation of inositol 1,4,5-trisphosphate receptors, are building blocks for local and global Ca2+ signalling. We characterized Ca2+ puffs in six cell types that expressed differing ratios of the three inositol 1,4,5-trisphosphate receptor isoforms. The amplitudes, spatial spreads and kinetics of the events were similar in each of the cell types. The resemblance of Ca2+ puffs in these cell types suggests that they are a generic elementary Ca2+ signal and, furthermore, that the different inositol 1,4,5-trisphosphate isoforms are functionally redundant at the level of subcellular Ca2+ signalling. Hormonal stimulation of SH-SY5Y neuroblastoma cells and HeLa cells for several hours downregulated inositol 1,4,5-trisphosphate expression and concomitantly altered the properties of the Ca2+ puffs. The amplitude and duration of Ca2+ puffs were substantially reduced. In addition, the number of Ca2+ puff sites active during the onset of a Ca2+ wave declined. The consequence of the changes in Ca2+ puff properties was that cells displayed a lower propensity to trigger regenerative Ca2+ waves. Therefore, Ca2+ puffs underlie inositol 1,4,5-trisphosphate signalling in diverse cell types and are focal points for regulation of cellular responses
Basal ryanodine receptor activity suppresses autophagic flux
The inositol 1,4,5-trisphosphate receptors (IP3Rs) and intracellular Ca2+ signaling are critically involved in regulating different steps of autophagy, a lysosomal degradation pathway. The ryanodine receptors (RyR), intracellular Ca2+-release channels mainly expressed in excitable cell types including muscle and neurons, have however not yet been extensively studied in relation to autophagy. Yet, aberrant expression and excessive activity of RyRs in these tissues has been implicated in the onset of several diseases including Alzheimer’s disease, where impaired autophagy regulation contributes to the pathology. In this study, we determined whether pharmacological RyR inhibition could modulate autophagic flux in ectopic RyR-expressing models, like HEK293 cells and in cell types that endogenously express RyRs, like C2C12 myoblasts and primary hippocampal neurons. Importantly, RyR3 overexpression in HEK293 cells impaired the autophagic flux. Conversely, in all cell models tested, pharmacological inhibition of endogenous or ectopically expressed RyRs, using dantrolene or ryanodine, augmented autophagic flux by increasing lysosomal turn-over (number of autophagosomes and autolysosomes measured as mCherry-LC3 punctae/cell increased from 70.37 ± 7.81 in control HEK RyR3 cells to 111.18 ± 7.72 and 98.14 ± 7.31 after dantrolene and ryanodine treatments, respectively). Moreover, in differentiated C2C12 cells, transmission electron microscopy demonstrated that dantrolene treatment decreased the number of early autophagic vacuoles from 5.9 ± 2.97 to 1.8 ± 1.03 per cellular cross section. The modulation of the autophagic flux could be linked to the functional inhibition of RyR channels as both RyR inhibitors efficiently diminished the number of cells showing spontaneous RyR3 activity in the HEK293 cell model (from 41.14% ± 2.12 in control cells to 18.70% ± 2.25 and 9.74% ± 2.67 after dantrolene and ryanodine treatments, respectively). In conclusion, basal RyR-mediated Ca2+-release events suppress autophagic flux at the level of the lysosomes
Confocal and multiphoton imaging of intracellular Ca<sup>2+</sup>
This chapter compares the imaging capabilities of a range of systems including multiphoton microscopy in regard to measurements of intracellular Ca<sup>2+</sup> within living cells. In particular, the excitation spectra of popular fluorescent Ca<sup>2+</sup> indicators are shown during 1P and 2P excitation. The strengths and limitations of the current indicators are discussed along with error analysis which highlights the value of matching the Ca<sup>2+</sup> affinity of the dye to a particular aspect of Ca<sup>2+</sup> signaling. Finally, the combined emission spectra of Ca<sup>2+</sup> and voltage sensitive dyes are compared to allow the choice of the optimum combination to allow simultaneous intracellular Ca<sup>2+</sup> and membrane voltage measurement
- …
