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RESEARCH ARTICLE

Oncogenic K-Ras suppresses IP3-dependent Ca
2+ release

through remodelling of the isoform composition of IP3Rs and ER
luminal Ca2+ levels in colorectal cancer cell lines

Cristina Pierro, Simon J. Cook, Thomas C. F. Foets, Martin D. Bootman* and H. Llewelyn Roderick`

ABSTRACT

The GTPase Ras is a molecular switch engaged downstream of

G-protein-coupled receptors and receptor tyrosine kinases that

controls multiple cell-fate-determining signalling pathways. Ras

signalling is frequently deregulated in cancer, underlying associated

changes in cell phenotype. Although Ca2+ signalling pathways

control some overlapping functions with Ras, and altered Ca2+

signalling pathways are emerging as important players in

oncogenic transformation, how Ca2+ signalling is remodelled

during transformation and whether it has a causal role remains

unclear. We have investigated Ca2+ signalling in two human

colorectal cancer cell lines and their isogenic derivatives in which

the allele encoding oncogenic K-Ras (G13D) was deleted by

homologous recombination. We show that agonist-induced Ca2+

release from the endoplasmic reticulum (ER) intracellular Ca2+

stores is enhanced by loss of K-RasG13D through an increase in the

Ca2+ content of the ER store and a modification of the abundance

of inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) subtypes.

Consistently, uptake of Ca2+ into mitochondria and sensitivity to

apoptosis was enhanced as a result of K-RasG13D loss. These

results suggest that suppression of Ca2+ signalling is a common

response to naturally occurring levels of K-RasG13D, and that

this contributes to a survival advantage during oncogenic

transformation.

KEYWORDS: K-Ras, Cancer, Inositol 1,4,5-trisphosphate, IP3, Ca
2+,

Mitochondria

INTRODUCTION
Ras proteins serve as molecular switches downstream of receptor
tyrosine kinases and upstream of the Raf protein kinases (Cully
and Downward, 2008; Downward, 2003a; Downward, 2003b;
Schulze et al., 2004). This pathway is frequently de-regulated in

cancer due to mutation in receptor tyrosine kinases (RTKs)
(e.g. EGFR), Ras itself (,20% of all human cancers) and B-
Raf (Downward, 2003b). These mutations elicit significant

consequences for cell fate owing to their position as upstream

regulators of multiple pathways involved in the regulation of cell
cycle, metabolism and cell death – hallmarks of the transformed

phenotype (Hanahan and Weinberg, 2000; Hanahan and
Weinberg, 2011). This central role of Ras and the downstream
pathways it engages have been targeted by the pharmaceutical

industry in the development of cancer therapeutics. Indeed, drugs
targeting the B-Raf–Mek–Erk pathway have now been approved
in the clinic (Belden and Flaherty, 2012; Little et al., 2013).

As Ras lies upstream of multiple cellular pathways,

redundancy in function between these signal transduction
cascades allows transformed cells to overcome drug targeting
and develop resistance (Little et al., 2013). Many of these

downstream pathways are also dysregulated in cancer (Wu et al.,
2013). Understanding the nature of interactions between Ras and
other major cellular signalling pathways is therefore essential for

development of effective strategies for suppression of Ras-driven
cancer (Wu et al., 2013). A major, but as yet undefined, signalling
interaction in oncogenic transformation is that between Ras and
Ca2+.

Ca2+ is a pleiotropic signalling messenger that, like Ras, plays
key roles in life and death choices, including the decision to
proliferate or die by apoptosis (Berridge et al., 2003) (Berridge

et al., 1998). Oscillations in cytoplasmic Ca2+ are necessary to
sustain the cell cycle, via calmodulin (CaM) (Cullen and Lockyer,
2002; Kahl and Means, 2003), whereas Ca2+ overload by the

mitochondria is an initiator of the intrinsic apoptotic cascade
(Rizzuto et al., 2003). Not surprisingly therefore, deregulation of
Ca2+ homeostasis has been reported in diseases associated with
overt or diminished proliferation and increased or insufficient

cell death. Cancer cells are characterized in part by uncontrolled
proliferation and apoptosis evasion (Hanahan and Weinberg,
2000; Hanahan and Weinberg, 2011); these characteristics have

been proposed to be supported by a remodelling of their Ca2+

signalling toolkit (Roderick and Cook, 2008). Indeed, alterations
in the expression of a number of Ca2+-handling proteins have

been reported in various tumours (Monteith et al., 2007),
but attempts to formulate general principles of Ca2+ signalling
alterations in cancer have thus far failed. Little consistency in the

alterations in Ca2+ protein expression is found among different
tumours and between studies. Moreover, few studies have
clarified whether altered Ca2+ signalling contributes to the
cancer phenotype or is a consequence.

Nowhere is this more apparent than in studies linking Ras
to Ca2+ signalling, which go back over 25 years and reveal a
complex interplay between these pathways. For example, Ras was

shown to enhance agonist-regulated inositol 1,4,5-trisphosphate
(IP3) production (Hashii et al., 1993; Lang et al., 1991; Wakelam
et al., 1986), a result that might be owing to the ability of Ras

protein to bind phospholipase C (PLC) e (Bunney et al., 2006;
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Bunney and Katan, 2006). Conversely, Ca2+ signalling can
activate certain Ras guanine-nucleotide-exchange factors (GEFs)

or Ras GTPase-activating proteins (GAPs) to promote or
inhibit activation of Ras and Ras-dependent signalling (Cook
and Lockyer, 2006; Roderick and Cook, 2008). The normal
interplay between these events is complex and is made all the

more so in cells expressing mutant oncogenic variants of Ras
such as those harbouring missense substitutions at Gly12, Gly13
or Gln61 (Barbacid, 1987), which prevent the hydrolysis of GTP

by GAPs, resulting in Ras being permanently active (Bollag and
McCormick, 1991). These de-regulated Ras oncoproteins activate
several effector pathways and contribute to virtually all of

the hallmarks of the cancer cell (Hanahan and Weinberg,
2000; Hanahan and Weinberg, 2011), including promoting cell
proliferation and survival. This pleiotropy of Ras undoubtedly

contributes to some of the striking cell- and tissue-specific
differences in the regulation of Ca2+ signalling seen in studies
with oncogenic Ras mutants. In addition, however, it is
apparent that mutant Ras proteins can elicit quite different

effects depending on their expression level. Most strikingly,
conditional overexpression of oncogenic K-Ras elicits cell cycle
arrest and senescence in primary mouse embryo fibroblasts

whereas conditional expression at endogenous levels causes cell
proliferation and oncogenic transformation (Tuveson et al., 2004).
Thus, although studies employing conditional overexpression of

mutant Ras proteins have merits, it is important to confirm results
in cell systems with native expression levels of mutant Ras to avoid
artefacts arising from overexpression.

To overcome this issue, we have taken advantage of isogenic
cell line pairs in which the KRAS allele encoding oncogenic K-
Ras has been ablated by homologous recombination (Shirasawa
et al., 1993). The parental cancer cell line harbouring the mutant

allele can then be directly compared with an isogenic derivative
that is identical apart from the lack of oncogenic Ras. This
approach has the benefit of comparing the effects of a single

copy of mutant KRAS rather than using supra-physiological
expression. Using this approach, we show that oncogenic K-Ras
inhibits Ca2+ release from the endoplasmic reticulum (ER),

reduces ER Ca2+ levels and suppresses Ca2+ flux to the
mitochondria. These results suggest that suppression of Ca2+

signalling is a common response to naturally occurring levels of
K-RasG13D that contributes to a survival advantage during

oncogenic transformation.

RESULTS
IP3-induced Ca2+ release is increased in cells deleted of
K-RasG13D

Although alterations in expression of a number of proteins

involved in Ca2+ regulation in various tumour types and tumour-
derived cell lines have been described (Monteith et al., 2007), few
studies have analysed how Ca2+ signalling is altered as a result of

transformation. Moreover, the nature and role of the effect of the
presence of natively expressed ‘driving’ oncogenes upon Ca2+

homeostasis has not been determined. As such, consensus regarding
how Ca2+ signalling participates in cellular transformation is

lacking (Roderick and Cook, 2008). Contributing to this great
variability is the problem in identifying appropriate experimental
controls for the cancer cells studied and the issues associated with

use of experimental systems in which pleiotropic oncogenes are
expressed at supra-physiological levels (Tuveson et al., 2004). In
this study, we sought to analyse the effects of a single oncogenic

allele at physiological expression levels. To this end, we compared

the HCT116 colorectal cancer cell line (K-RasG13D/WT) with its
isogenic derivative HKH2 (K-Ras2/WT) in which the mutated Ras

allele has been deleted by homologous recombination. In contrast to
HCT116 cells, HKH2 cells do not grow in soft agar and do not form
tumours in nude mice (Shirasawa et al., 1993). We employed these
cell lines to evaluate whether the presence of the endogenous

oncogenic K-RasG13D allele modified the generation of Ca2+

signals. As shown in Fig. 1, as a consequence of loss of K-RasG13D

in HKH2 cells, Ca2+ signals induced following stimulation of

purinergic receptors with ATP were enhanced when compared to
HCT116 cells (Fig. 1Ai). This difference was evident in the
percentage of responding cells (Fig. 1Aii), in the amplitude

(Fig. 1Aiii) and in the integral (area under the curve; AUC) of
the Ca2+ transients (Fig. 1Aiv).

To isolate the contribution of Ca2+ influx to the agonist-induced

Ca2+ transient, experiments were performed in the absence of
extracellular Ca2+. As observed in Ca2+-containing buffer, the
AUC and responsiveness to agonist (applied at a concentration
where the greatest differences in agonist responses were observed

in Ca2+-containing buffer) remained greater in HKH2 than
HCT116 cells when Ca2+ was omitted from the imaging buffer.
These data therefore indicated that K-RasG13D in HCT116 cells

was acting to suppress Ca2+ release from the ER (Fig. 1B).
To further probe the interaction between Ras and Ca2+

signalling in HCT116, Ras expression was also suppressed

by small interfering RNA (siRNA). Using this approach, Ras
expression was reduced by 85% when compared to HCT116 cells
transfected with control non-targeting siRNA (Fig. 2A). siRNA

depletion of Ras in HCT116 cells resulted in a significant
increase in ATP-stimulated Ca2+ signals in these cells (Fig. 2B).
The increase in Ca2+ signalling was manifest as an increase in the
percentage of responding cells and in the amplitude and AUC of

the Ca2+ responses (Fig. 2Bii–iv). These data are consistent with
that observed in HKH2 cells and support the conclusion that the
difference between HCT116 and HKH2 cells is due to K-RasG13D

ablation and not a phenotype developed as a result of HKH2
culture since their initial generation.

To test whether the enhanced Ca2+ responses observed as a result

of K-RasG13D deletion in HCT116 cells was a general feature of G-
protein-coupled receptor (GPCR) signalling in these cells, we
examined histamine-induced Ca2+ responses, which proceed
through a similar GPCR–Gq–PLC–IP3 pathway. In response to

this agonist, a greater percentage of HKH2 cells exhibited Ca2+

transients, which were of a greater amplitude and AUC than those
observed in HCT116 cells (Fig. 3A). These data indicated that the

alteration in Ca2+ fluxes was not specific to differences in
purinergic receptor signalling but was a more general effect,
involving signals downstream of GPCR engagement.

To directly address whether an alteration in IP3 signalling
contributed to the enhancement of ER Ca2+ release in cells
lacking K-RasG13D, Ca2+ release was induced with a cell-

permeant esterified form of IP3 [myo-inositol 1,4,5-trisphos-
phate hexakis(butyryloxymethyl); IP3BM], which was perfused
over the cells in Ca2+-free imaging buffer during the course of the
experiment (Conway et al., 2006; Kasri et al., 2004; Thomas

et al., 2000). Using this approach, IP3 receptors (IP3Rs) are
directly engaged, bypassing GPCR, Gq, PLC and endogenous IP3.
As in experiments using ATP and histamine, Ca2+ signals induced

by IP3BM were also greater in HKH2 cells than in their HCT116
counterparts (Fig. 3B).

Given that K-Ras is frequently mutated in colorectal cancer, we

investigated whether Ca2+ signalling was also remodelled as a
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result of loss of K-RasG13D in a second independent colorectal
cancer cell line, DLD-1 (Shirasawa et al., 1993). As performed

for HCT116 cells and their isogenic derivatives, experiments
were carried out in Ca2+-free imaging buffer to restrict
our analysis to Ca2+ release from the ER. ATP-induced Ca2+

fluxes were greater in the K-RasG13D-deleted DKO4 cell line (K-

Ras2/WT) than in their parental isogenic DLD-1 cell line (K-
RasG13D/WT) (Fig. 4). This was manifest as an increase in the
percentage of responding cells and in the amplitude and AUC of

the Ca2+ responses (Fig. 4ii–iv). Taken together, these data show
that oncogenic K-RasG13D limits IP3-induced Ca2+ release (IICR)
in both HCT116 and DLD-1 cells.

ER Ca2+ content is increased in cells deleted of K-RasG13D

Given that the magnitude of Ca2+ released from the ER is

determined by its state of filling, we hypothesized that the
enhanced Ca2+ release observed following K-RasG13D deletion
in HKH2 cells was due to an increase in content of the

IP3-releasable ER Ca2+ store. To assess ER Ca2+ levels, the
magnitude of the Ca2+ mobilized from the ER by the SERCA

pump inhibitor thapsigargin (Tg) was analysed. Through
inhibition of SERCA, Tg reveals the non-specific Ca2+ leak
from the ER causing Ca2+ accumulation in the cytosol. As store
depletion with Tg also leads to Ca2+ influx across the plasma

membrane, measurements were performed in Ca2+-free imaging
buffer. Application of Tg induced an elevation in intracellular
Ca2+ in both the HCT116 and HKH2 cell lines (Fig. 5A). The

amplitude and AUC of the Tg-induced Ca2+ transient was,
however, significantly greater in the HKH2 cell line compared to
HCT116 cells (Fig. 5Aii,iii).

To complement these data and to accommodate for the indirect
nature of using the Tg-induced elevation in cytosolic Ca2+ as a
measure of ER luminal Ca2+ content, the free Ca2+ content of the

ER was also measured directly using a genetically encoded GFP-
based Ca2+ indicator targeted to the ER (known as D1ER)
(Palmer et al., 2004). This indicator relies upon a Ca2+-dependent

Fig. 1. Agonist (ATP)-induced Ca2+ signals are
influenced by K-RasG13D in the HCT116 colorectal
cancer cell line. (Ai) Representative ATP-stimulated
Ca2+ responses of HCT116 and HKH2 cells. Cells
were stimulated with ATP at the concentrations
indicated and experiments performed in the presence
of extracellular Ca2+. (Aii) Percentage of responding
cells. (Aiii) Peak amplitude of Ca2+ response.
(Aiv) Integrated Ca2+ response (AUC) of responding
cells. Results are means6s.e.m. of data from 4 days
of experiments, where three coverslips per cell type
were imaged on each day (n512). At least 60 cells
per coverslip were analysed. White bars represent
HCT116 cells and black bars represent HKH2 cells.
(Bi) Representative ATP-stimulated Ca2+ responses
in HCT116 and HKH2 cells. Cells were stimulated
with 2 mM ATP in absence of extracellular Ca2+.
(Bii) Percentage of responding cells. (Biii) Peak
amplitude of Ca2+ response. (Biv) AUC of responding
cells. Results are the means6s.e.m. of data from 3
days of experiments, where three coverslips per cell
type were imaged on each day (n59). At least 60
cells per coverslip were analysed. *P,0.05;
**P,0.01; ***P,0.001 (Student’s t-test).
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change in Förster resonance energy transfer (FRET) between

cyan (CFP) and yellow (YFP) derivatives of GFP. D1ER was
expressed in a reticular pattern and colocalized with the ER
protein calnexin in both cell types, confirming its ER localization
(Fig. 5Bi). In resting cells, greater FRET (the YFP:CFP ratio)

was observed in the HKH2 cell line than in the HCT116 cell line,
indicating higher basal Ca2+ in the ER of this cell line (Fig. 5Bii).
Application of the Ca2+ ionophore ionomycin to fully deplete

Ca2+ from the ER store resulted in a decline in FRET to a lower
plateau, which was equivalent between the two cell types
(Fig. 5Bii). The similar Ca2+-free FRET between both cell

types indicated that D1ER was behaving equivalently in the
two cell types. A ratio of basal FRET to Ca2+-free FRET was
therefore used to normalize ER Ca2+ levels, which also indicated

greater Ca2+ levels in the ER of HKH2 than HCT116 cells
(Fig. 5Biii).

IP3R isoform expression is remodelled and SERCA2b
expression is increased in cells deleted of K-RasG13D

Having identified that an increase in ER Ca2+ contributed to the
enhanced Ca2+ signalling in K-RasG13D-deleted cells, an analysis

of proteins involved in ER Ca2+ signalling was carried out. In

these experiments, as we have employed elsewhere when
analysing ER proteins of a high molecular mass (Drawnel
et al., 2012; Harzheim et al., 2009), the ER membrane protein
calnexin was used as a loading control for normalization of

the protein of interest between cell types. Expression of
calnexin was found to exhibit a similar expression profile
between HCT116 and HKH2 cells as did two other proteins –

GAPDH and b-actin – that are routinely used for normalization
in immunoblotting (supplementary material Fig. S1). The
expression of SERCA2b, which is primarily responsible for

ER Ca2+ sequestration, was increased in HKH2 cells (Fig. 5C),
whereas the expression of calreticulin, the major Ca2+ storage
protein in non-excitable cells, was not altered between the two

cell types (Fig. 5D). Given that SERCA3 upregulation has been
reported in cancer (Brouland et al., 2005), its expression was
also investigated but found to be unchanged in cells lacking
K-RasG13D (supplementary material Fig. S1). Notably, the

expression profile of IP3Rs was significantly different between
HKH2 and HCT116 cells. Specifically, IP3R3 (also known as
ITPR3) expression was increased and IP3R1 (also known as

Fig. 2. ATP-stimulated Ca2+ responses are enhanced by siRNA
depletion of K-Ras in HCT116 cells. (Ai) Representative immunoblot
of K-Ras in HCT116 cells transfected with control (ctrl) siRNA or
siRNA targeting K-Ras. Calnexin (CLNX) was used as a loading
control. (Aii) Quantification of K-Ras knockdown in HCT116 cells
(n53). (Bi) Representative Ca2+ responses of siRNA-transfected
HCT116 cells stimulated with 2 mM ATP in Ca2+-free imaging buffer.
(Bii) Percentage of responding cells. (Biii) Peak amplitude of Ca2+

response. (Biv) AUC of responding cells. Results are means6s.e.m.
of data from 3 days of experiments, where three coverslips per cell
type were imaged on each day (n59). At least 60 cells per coverslip
were analysed. *P,0.05; **P,0.01; ***P,0.001 (Student’s t-test).
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ITPR1) expression reduced in the HKH2 K-RasG13D-deleted
cells when compared to HCT116 cells (Fig. 5E). IP3R2 (also
known as ITPR2) expression was not detectable in either cell

type (supplementary material Fig. S1).

Cells deleted of K-RasG13D exhibit increased mitochondrial
Ca2+ uptake and sensitivity to apoptosis
Mitochondrial Ca2+ uptake is a low-affinity process that occurs in

a privileged manner at microdomains of high Ca2+ generated by
IP3Rs located at sites where the ER and mitochondria are in close
proximity (Csordás et al., 2006; Duchen, 2000; Rizzuto et al.,

1998; Rizzuto and Pozzan, 2006). Ca2+ flux from ER-localized
IP3Rs to the mitochondria has been shown to play an important
role in regulation of cell death and metabolism (Cárdenas et al.,
2010; Pinton et al., 2001) – cell properties remodelled during

oncogenic transformation (Hanahan and Weinberg, 2000;
Hanahan and Weinberg, 2011). Given the enhancement in IP3-
mediated Ca2+ signalling observed in K-RasG13D-deleted HKH2

cells, we hypothesized that mitochondrial Ca2+ uptake would also
be enhanced and contribute to greater sensitivity to death-
inducing stimuli in the K-RasG13D-negative cells. The effect of

K-Ras deletion upon mitochondrial Ca2+ uptake during IP3-
stimulated Ca2+ release from the ER was therefore analysed. To
induce equivalent Ca2+ signals between cell types, and to restrict
the source for mitochondrial Ca2+ sequestration to Ca2+ arising

from IP3Rs, experimental conditions were used in which a
maximal concentration of ATP was applied and cells were
imaged in Ca2+-free imaging buffer. Mitochondrial matrix

Ca2+ was measured by confocal imaging of mitochondrially
compartmentalized rhod-2 AM (Fig. 6A). Cytoplasmic Ca2+

responses were detected by measuring the residual non-

compartmentalized rhod-2 fluorescence in the nucleus. In this
way, a mitochondrial-free region of the cell can be analysed and
used as a surrogate for bulk cytosolic Ca2+ (Collins et al., 2001;

Fig. 3. Ca2+ responses induced by histamine and IP3 ester are
enhanced in the K-RasG13D-deleted HKH2 cell line. (Ai) Representative
Ca2+ traces of HCT116 and HKH2 cells exposed to 1 mM histamine.
Histamine was applied in the Ca2+-free imaging buffer. (Aii) Percentage of
responding cells. (Aiii) Peak amplitude of Ca2+ response. (Aiv) AUC of
responding cells. Results are means6s.e.m. of data from 4 days of
experiments, where three coverslips per cell type were imaged on each day
(n512). At least 30 cells per coverslip were analysed. (Bi) Representative
Ca2+ traces of HCT116 and HKH2 cells exposed to IP3 ester (10 mM).
(Bii) Percentage of responding cells. (Biii) Peak amplitude of Ca2+ response.
(Biv) AUC of responding cells. Results are means6s.e.m. of data from 4
days of experiments, where three coverslips per cell type were imaged on
each day (n512). At least 60 cells per coverslip were analysed. **P,0.01;
***P,0.001 (Student’s t-test).

Fig. 4. ATP-stimulated Ca2+ responses are controlled by K-RasG13D in
the DLD-1 colorectal cancer cell line. (Ai) Representative Ca2+ responses
of DLD-1 and DKO4 cells stimulated with 2 mM ATP in Ca2+-free imaging
buffer. (Aii) Percentage of responding cells. (Aiii) Peak amplitude of Ca2+

response. (Aiv) AUC of responding cells. Results are means6s.e.m. of data
from 3 days of experiments, where three coverslips per cell type were
imaged on each day (n59). At least 60 cells per coverslip were analysed.
*P,0.05; ***P,0.001 (Student’s t-test).
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Szado et al., 2008). ATP induced an increase in Ca2+ in the

majority of mitochondria of both cell types, and this remained
elevated for the duration of the recording (Fig. 6Bi). Although a
minor difference in the percentage of responding mitochondria
was observed between cell types (Fig. 6Bii), the integrated Ca2+

response of the K-Ras-deleted HKH2 cells was significantly
greater than in HCT116 cells (Fig. 6Biii).

Experiments were then performed to determine whether the

differences in the mitochondrial Ca2+ uptake between the two cell
types were a consequence of altered IP3 signalling in ER–
mitochondrial microdomains or due to an intrinsic alteration in

the Ca2+ uptake properties of the mitochondria. To this end,
mitochondrial Ca2+ uptake during the increase in cytosolic Ca2+

associated with store-operated Ca2+ influx was also monitored.

Ca2+ influx was initiated by re-addition of Ca2+ to the imaging
buffer following depletion of intracellular ER Ca2+ stores with Tg
in Ca2+-free imaging buffer (Collins et al., 2001; Giacomello

et al., 2010; Hanson et al., 2008b). Under these conditions, a

minor difference in the percentage of responding mitochondria
was observed and no difference in the integrated Ca2+ response of
mitochondria was observed between HCT116 and HKH2 cells
(Fig. 6C). These observations are consistent with the reported

properties of Ca2+ uptake from bulk cytosol rather than from the
microdomains of high Ca2+ at the ER–mitochondrial interface
(Collins et al., 2001; Giacomello et al., 2010; Hanson et al.,

2008b). Together these data indicated that ER–mitochondrial
Ca2+ flux is enhanced as a result of K-RasG13D deletion in a
manner independent of an alteration in the intrinsic Ca2+ uptake

properties of the mitochondria.
As a measure of the functional consequences of enhanced ER–

mitochondrial Ca2+ flux following K-RasG13D deletion, the

sensitivity of HCT116 and HKH2 cells to apoptosis induced by
a stimulus that acts via Ca2+ was assessed. We and others have
previously shown that menadione induces apoptosis through

Fig. 5. ER Ca2+ levels are greater and
expression of ER Ca2+-handling proteins is
remodelled in K-RasG13D-deleted HKH2
cells. (Ai) Representative Ca2+ responses in
HCT116 and HKH2 cells following application
of thapsigargin in Ca2+-free imaging buffer.
(Aii) Peak Ca2+ response. (Aiii) AUC. Results
are means6s.e.m. of data from 4 days of
experiments, where three coverslips per cell
type were imaged on each day (n512). At
least 60 cells per coverslip were analysed.
(Bi) Expression of the D1ER Ca2+ sensor in
the ER. The expression and localization of
D1ER determined by its excitation of YFP (in
green) colocalizes with the ER-localized
protein calnexin (in red; overlay image in
yellow). (Bii) Representative FRET signals of
D1ER-transfected cells. The Ca2+ level at the
beginning of the experiment (represented by
the YFP:CFP emission ratio) is higher in
HKH2 cells compared to HCT116.
(Biii) Baseline-subtracted Ca2+-free
fluorescence of the two cell types imaged.
Results are means6s.e.m. of 3 days of
experiments, where three coverslips per cell
type were imaged on each day (n59). At least
10 D1ER-expressing cells per coverslip were
analysed. *P,0.05; **P,0.01; ***P,0.001
(Student’s t-test). (Ci) Representative
immunoblot of SERCA2b. Calnexin (CLNX)
was used as a loading control. (Cii) Fold
change in SERCA2b expression in HKH2
cells with respect to HCT116 cells. Results are
means6s.e.m. (n521 for SERCA2b).
(Di) Representative immunoblot of calreticulin.
(Dii) Fold change in calreticulin protein
expression in HKH2 cells with respect to
HCT116 cells (mean6s.e.m., n58).
(Ei, Eiii) Representative immunoblot of IP3Rs
detected with an anti-IP3R1 antibody (Ei) and
an anti IP3R3 antibody (Eiii). IP3R2 was not
expressed in the cells. Calnexin (CLNX) was
used as a loading control. (Eii, Eiv). Fold
change in IP3R1 (Eii, n515) and IP3R3
(Eiv, n527) expression in HKH2 cells with
respect to HCT116 cells. *P,0.05; **P,0.01
(one-sample Student’s t-test).
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reactive oxygen species (ROS)-dependent activation of IP3Rs and

an elevation in mitochondrial Ca2+ (Baumgartner et al., 2009;
Szado et al., 2008). To this end, cytochrome c loss from
mitochondria and DNA fragmentation were used as hallmarks of

apoptosis. Cytochrome c distribution was assessed by confocal
imaging of cells immunolabelled with antibodies against
cytochrome c following exposure to menadione for 20 h
(Fig. 7Ai). Although untreated HKH2 and HCT116 cells

displayed a typical mitochondrial distribution of cytochrome c,
this mitochondrial distribution was lost following treatment with
menadione and became distributed diffusely throughout the

cytosol (Fig. 7Ai). HKH2 cells however exhibited a greater
sensitivity to menadione treatment than HCT116 cells with
cytochrome c being lost from the mitochondria in a significantly

greater number of cells at 50 mM menadione (Fig. 7Aii). DNA
fragmentation was assessed as the percentage of the cell
population with DNA content lower than that observed in the

G1 phase of the cell cycle. DNA content was determined by flow
cytometric analysis of cells stained with propidium iodide (PI)
(Hanson et al., 2008a). Basal levels of cell death were detected in
both HCT116 and HKH2 cells (Fig. 7B). Application of

menadione induced apoptosis in both HCT116 and HKH2 cells.
However, the percentage of the menadione-treated cell population

with DNA content lower than in G1 phase was significantly

greater in the K-RasG13D-deleted cells than in their HCT116
counterparts (Fig. 7B). Caspase activation, a further hallmark
of apoptosis, was also observed following menadione treatment

in HCT116 and HKH2 cells by imaging (Fig. 7Ai) and
immunoblotting (supplementary material Fig. S2).

Taken together, these data indicate that decreased flux of Ca2+

to the mitochondria contributes to the oncogenic phenotype of

HCT116 cells.

DISCUSSION
The impact of oncogenic K-Ras on Ca2+ signals, particularly in
the context of oncogenic transformation is poorly understood.
Here, we provide the first demonstration of an interaction of

natively expressed oncogenic K-Ras with Ca2+ signalling and
how this signalling crosstalk might affect cell fate. By comparing
isogenic colon cancer cell line pairs expressing either a single

copy of mutant K-RasG13D or no mutant K-Ras we have
determined that K-RasG13D deletion enhances IP3-dependent
Ca2+ signals and ER–mitochondrial Ca2+ flux and that this
sensitizes cells to pro-apoptotic stimuli. From these data, we

propose that suppression of IP3 signalling from the ER and Ca2+

uptake by the mitochondria contributes to the pro-survival

Fig. 6. Mitochondrial Ca2+ responses are
enhanced by loss of K-RasG13D in HKH2 cells.
(A) Representative images of cells exhibiting
mitochondrial Ca2+ responses to 100 mM ATP.
Experiments are in Ca2+-free imaging buffer.
Time points of experiments are indicated. Scale
bar: 10 mm. (Bi) Representative traces of
mitochondrial Ca2+ responses in cells exposed to
100 mM ATP in the absence of extracellular Ca2+.
(Bii) Percentage of responding mitochondria.
(Biii) AUC of mitochondrial Ca2+ response.
(Ci) Representative mitochondrial Ca2+

responses during store operated Ca2+ entry,
which was initiated by addition of Ca2+ to the
imaging buffer following depletion of intracellular
stores with Tg (arrow). (Cii) Percentage of
mitochondria exhibiting Ca2+ responses.
(Ciii) AUC of mitochondrial Ca2+ response. All
bar graphs represent the means6s.e.m. of data
from 3 days of experiments, where three
coverslips per cell type were imaged on each
day. At least ten cells per coverslip and at least
five mitochondria per cell were analysed.
*P,0.05; **P,0.01; ***P,0.001; n.s., not
significant (Student’s t-test).
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properties of K-RasG13D associated with the oncogenic
phenotype.

Cytosolic Ca2+ signals are generated by Ca2+ entry across the
plasma membrane, Ca2+ release from intracellular stores or a
combination of both (Berridge et al., 2003; Berridge et al., 2000;

Bootman et al., 2003). Through manipulation of these Ca2+

signalling pathways in transformed cells, specific roles for each
of these Ca2+ sources in controlling aspects of cancer cell biology
including regulation of cell proliferation, migration and death

have been described (Crépin et al., 2007; Humez et al., 2004;
Legrand et al., 2001; Lipskaia et al., 2009; Szatkowski et al.,
2010; Yoshida et al., 2012). Altered expression of a number of

Ca2+-handling proteins in tumour tissue has also been determined
(Arbabian et al., 2012; Korosec et al., 2006; Monteith et al., 2012;
Monteith et al., 2007; Motiani et al., 2013). Although these

findings are suggestive of an important role of certain Ca2+

signalling pathways in transformed cells, causality has not
been demonstrated. However, somatic mutations in the gene

encoding SERCA have been identified in patients with colon
cancer leading to the proposal that altered Ca2+ signalling

predisposes to oncogenic transformation (Korosec et al., 2006).
Cancers arise through mutations in oncogenes such as KRAS or

tumour suppressors that serve to promote or suppress the activity
of the proteins they encode, respectively (Hanahan and Weinberg,
2000). How the native expression of a specific oncoprotein in

transformed cells affects Ca2+ signalling and whether this
contributes to the phenotype of the transformed cell is,
however, not clear. A particular issue when investigating Ca2+

signalling pathways is that the analysis of Ca2+ signalling is only

possible in live cells. The availability of appropriate controls for
the cell line expressing the driving oncogene is also essential
(Roderick and Cook, 2008). For analysing the effects of activated

Ras isoforms, this is a particular concern because oncogenic K-
Ras can induce senescence or cell proliferation depending on the
level of overexpression (Serrano et al., 1997; Tuveson et al.,

2004). These issues are minimized through the use of isogenic
cell line pairs in which studies are performed upon a cancer cell
line harbouring a single allele of an activating oncogene and a

second cell line in which the driving oncogene has been deleted
by homologous recombination (Shirasawa et al., 1993). By

Fig. 7. Sensitivity to apoptosis induced by menadione is
enhanced by loss of K-RasG13D in HKH2 cells. (Ai) Confocal
images of cytochrome c (green) and activated caspase 3 (red) in
HCT116 and HKH2 cells following 20 h exposure to 50 mM
menadione. Scale bar: 10 mm. (Aii) Number of cells exhibiting diffuse
cytochrome c. Upon treatment with menadione, a higher percentage
of HKH2 cells displayed diffuse cytochrome c distribution in
comparison with HCT116 (n53 experiments). (B) Effect of exposure
to menadione for 20 h upon the percentage of HCT116 and HKH2
cells with a DNA content lower than in the G1 phase (Sub-G1). DNA
content was measured by flow cytometric analysis of PI-stained
DNA. Results are means6s.e.m. (n55). *P,0.05 (two-way
ANOVA).
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comparing hormone-agonist-induced Ca2+ signalling between
such pairs of cell lines, we found that loss of K-RasG13D enhanced

cytosolic Ca2+ signals. The elevated Ca2+ responses in K-
RasG13D-deleted cells persisted in Ca2+-free imaging buffer,
indicating that Ca2+ release from the ER was important in
defining the properties of the Ca2+ response. Importantly, Ca2+

signals were greater in two different colorectal cancer cell lines in
which K-RasG13D had been deleted (HKH2 and DKO4), as well
as in HCT116 cells when K-Ras expression was reduced by

siRNA, indicating that suppression of hormone-stimulated Ca2+

signalling is a common response to K-RasG13D in colorectal cell
lines.

The greater magnitude of hormone-induced Ca2+ release from
the ER in K-RasG13D-deleted cells could have arisen through a
number of mechanisms. For example, by increased GPCR

expression or coupling to downstream effectors, modification in
inositol phosphate metabolism, changes in IP3R expression or
through a greater Ca2+ content of the ER. Given its pleiotropic
nature, we speculated that Ras could interfere with any or all of

these processes. Increased PLC activity and IP3 levels have been
reported in a number of transformed cell lines and in breast,
ovarian and colonic carcinoma, suggesting that basal signalling is

enhanced as a result of transformation (Weber, 2005). Oncogenic
K-Ras might also increase signalling activity through stimulating
PLCe, which in turn, by increasing IP3 levels, would promote

Ca2+ release from stores (Kelley et al., 2001). However, our
observations that Ca2+ signals are negatively correlated with Ras
abundance suggests that enhanced basal signalling possibly

involving PLCe does not contribute to Ras-mediated regulation
of Ca2+ signalling in cells harbouring mutated K-RasG13D. As
Ca2+ signals induced by stimulation of the histamine receptor,
another GPCR, were also greater in K-RasG13D-deleted cells, it is

unlikely that modifications in purinergic receptor expression
contributed to the effects of K-RasG13D deletion. Similarly, Ca2+

responses induced by a cell-permeant analogue of IP3 were

greater in K-RasG13D-deleted cells than in the isogenic parental
cell line. As this cell-permeant IP3 directly activates IP3Rs,
circumventing GPCRs, G proteins and PLC, our data indicate that

native levels of K-RasG13D has a direct effect on IP3R-mediated
Ca2+ release from the ER.

Notably, although the combined expression of IP3R isoforms
was unaltered by K-RasG13D deletion, the relative abundance of

the expressed IP3R subtypes was altered in the K-RasG13D-deleted
cells. In particular, in K-RasG13D-deleted cells, IP3R3 expression
was increased and IP3R1 expression suppressed, indicating that

in colorectal cancer cell lines, K-RasG13D represses IP3R3
expression. Changes in the expression of IP3Rs in cancer cells
have been reported previously. Most notably, an increase in

IP3R3 expression at the mRNA level has been detected in a recent
microarray analysis of K-Ras-deleted cells lines (Vartanian et al.,
2013). In gastric cancer cells, an increase in IP3R3 was

observed in the ascites, but not in cancer cells established
from primary tumours. In the ascites, IP3R3 inhibition by
2-aminoethoxydiphenyl borate (2-APB) induced apoptosis
(Sakakura et al., 2003). IP3R3 expression is also increased in

MCF-7 cells induced to proliferate with estradiol (Szatkowski
et al., 2010). An increase in IP3R2 expression together with K-
Ras has been observed in non-small cell lung cancer (NSCLC)

cells (Heighway et al., 1996). Given the differing properties of
each IP3R isoform, this change in isoform composition following
K-Ras deletion might have important consequences. As different

IP3R isoforms are regulated differently by IP3 and Ca2+, giving

rise to distinct Ca2+ signalling fingerprints (Hattori et al., 2004;
Miyakawa et al., 1999), the change in the relative abundance of

each IP3R isoform could contribute to the differences in Ca2+

signalling observed between the two cell types. A notable feature
of IP3R3 is that it is least sensitive to Ca2+-dependent inhibition
(Hagar et al., 1998). As a result, whereas expression of IP3R1

supports regular Ca2+ oscillations, monophasic Ca2+ transients are
observed in IP3R3-expressing cells (Almirza et al., 2010; Hattori
et al., 2004; Miyakawa et al., 1999). Indeed, siRNA reduction in

IP3R3 expression in MCF-7 breast cancer cells transformed Ca2+

responses from a peak–plateau to a more oscillatory profile
(Szatkowski et al., 2010). These different Ca2+ signatures

probably allow signalling from each receptor to participate in
different cell fate choices. Ca2+ oscillations arising from IP3R1
might be optimized for controlling cytokinesis (Kittler et al.,

2004) and gene expression (Dolmetsch et al., 1998), whereas the
sustained Ca2+ signals arising from IP3R3 might promote cell
death (Blackshaw et al., 2000; Khan et al., 1996; Mendes et al.,
2005; Szatkowski et al., 2010). Thus, a potential outcome of these

different Ca2+ signatures is that the Ca2+ oscillations that arise
from IP3R1 in HCT116 cells sustain their rapid proliferation,
whereas the reduction in IP3R3 protects the cells from cytotoxic

Ca2+ signals.
An increase in ER Ca2+ store content was also observed in K-

RasG13D-deleted cells. As the Ca2+ content of the ER is a

dominant determinant of the magnitude of the IP3-stimulated
Ca2+ transient (Berridge, 2006; Caroppo et al., 2003), it is likely
that this alteration in ER Ca2+ store content contributes

substantially to the enhancement in Ca2+ signalling observed in
K-RasG13D-deleted cells. Our data are consistent with the view
that a relatively low level of Ca2+ in the ER offers an advantage to
the transformed cell (Bergner and Huber, 2008). Specifically, by

limiting Ca2+ release, the effect of stimuli that serve to induce
apoptosis is diminished. The cytotoxic effects of Ca2+ release
from the ER are mediated through accumulation in mitochondria,

which results in permeability transition and activation of
apoptotic pathways (Pinton et al., 2008; Roderick and Cook,
2008). Elevated Ca2+ also activates DNA endonucleases,

promotes phosphatidylserine exposure, leads to cellular ATP
depletion, and increases ROS and ER stress (Orrenius et al.,
2003). Despite this well-accepted view of the benefit of lower ER
Ca2+ for survival of transformed cells, much of the supporting

data has emerged through investigation into the mechanism of
actions of proteins involved in regulation of cell death pathways
that are dysregulated in cancer. For example, enhanced

expression of Bcl-2 family members or knockout of BH3-only
pro-apoptotic proteins (which result in increased abundance of
the anti-apoptotic family members) result in a lowering of free

ER Ca2+ levels and reduced flux of Ca2+ to the mitochondria
(Pinton et al., 2008; Roderick and Cook, 2008). By increasing
leak through the IP3R or suppressing their activity, Bcl-2 family

members also reduce IP3-induced Ca2+ release (Chen et al., 2004;
Oakes et al., 2005). No differences in the expression of Bak, Bax,
Bcl-2, Bcl-XL or Mcl-1 was detected between the HCT116 and
HKH-2 cell types analysed here (data not shown). Notably, when

analysed in HCT116 cells, no prominent role for Bax in
mitochondrial outer membrane permeabilization (MOMP) was
detected (De Marchi et al., 2004), supporting the hypothesis that

Ca2+ signalling remodelling by oncogenic K-Ras activation in
HCT116 cells does not involve alterations in the expression of
Bcl-2 family members. IP3R activity is also reduced by

phosphorylation by the pro-survival kinase PKB/Akt (Khan
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et al., 2006; Marchi et al., 2012; Szado et al., 2008); a kinase that
is increased in activity in many cancers.

A decrease in ER Ca2+ content has been detected in a subset of
lung cancer cell lines when compared to normal human bronchial
epithelial cells (Bergner et al., 2009). Consistent with the
reduction in ER Ca2+ in cancer, a reduction in expression

of SERCA pump has been observed in cancer-derived cell lines
and in tumours. Mutations in SERCA that result in loss of
expression or activity have also been detected in tumours

(Monteith et al., 2007). The importance of SERCA expression
is also demonstrated by the induction of squamous cell cancers
in SERCA2b haploinsufficient mice (Prasad et al., 2005). In

humans, however, loss of one SERCA allele results in Darrier’s
disease, which is characterized by a skin phenotype (Hovnanian,
2007). In line with these studies, SERCA2b expression was

significantly increased in K-RasG13D-deleted cells, showing that a
reduction in SERCA2b activity contributes to the phenotype of
K-Ras-transformed cells. The increase in ER Ca2+ in K-RasG13D-
deleted cells might also be explained by the observed reduction in

IP3R1, which has been reported to contribute to the Ca2+ leak
from the ER (Kasri et al., 2006; Oakes et al., 2005). A positive
correlation between ER Ca2+ levels and proliferation has been

observed in prostate cancer cell lines (Legrand et al., 2001).
However, because depletion of the ER Ca2+ store inhibits
proliferation and induces cell death in transformed cells, it

would be important to correlate the absolute Ca2+ content of the
ER and cell proliferation in these studies.

The mitochondria are an important target of Ca2+ released

from the ER (Rizzuto et al., 2012). Mitochondrial Ca2+ uptake is
a low-affinity process. As such, mitochondria preferentially
accumulate Ca2+ at sites of close apposition with the ER
called mitochondrial-associated membranes (MAMs), which are

enriched in Ca2+ release channels including IP3Rs (Csordás et al.,
2010; Hajnóczky and Csordás, 2010; Rizzuto et al., 2004).
Through this preferred pathway, mitochondrial function,

including metabolism and induction of apoptotic cell death, is
acutely modulated by IP3-mediated Ca2+ signals. Here, we show
the first evidence of modifications in mitochondrial Ca2+ uptake

downstream of endogenous oncogenic K-Ras. The ablation of
oncogenic K-RasG13D increased the accumulation of Ca2+ in the
mitochondria following Ca2+ release from the ER. Notably, the
difference between the HCT116 and HKH2 cells was lost when

Ca2+ uptake during Ca2+ influx from the extracellular space
was analysed. Under these conditions, Ca2+ uptake into the
mitochondria is not restricted to the IP3R-containing MAMs. As

such, microdomains of high Ca2+ at the ER–mitochondrial
interface do not drive mitochondrial Ca2+ sequestration and the
uptake observed is due to the properties of the mitochondrial

uptake mechanisms alone (Collins et al., 2002; Rizzuto and
Pozzan, 2006; Szabadkai and Duchen, 2008). Our data therefore
suggest that the enhancement of ER–mitochondrial Ca2+ flux

following K-RasG13D ablation is through modification of
IICR. Consistent with increased IICR, this enhanced ER-to-
mitochondria Ca2+ flux in HKH2 cells was mirrored by an
increased sensitivity of these cells to Ca2+-induced cell death. The

increase in the ER-to-mitochondria Ca2+ transfer observed in
HKH2 cells indicates that the expression of K-RasG13D acts to
reduce this flux in HCT116 cells. In line with their lower ER–

mitochondrial Ca2+ flux and apoptosis, the expression of IP3R3,
which has been proposed to specifically mediate pro-apoptotic
Ca2+ fluxes at the MAM, is also reduced in HCT116 cells

(Blackshaw et al., 2000; Khan et al., 1996; Mendes et al., 2005).

More recently, the tumour suppressor PML, which is localized
at the ER, has been reported to specifically mediate the

dephosphorylation of IP3R3 by PP2a (Giorgi et al., 2010).
Notably, the reintroduction of ER-targeted PML in PML2/2 cells
restored the sensitivity to Ca2+-dependent apoptosis (induced by
Menadione and H2O2), but not that to Ca2+-independent apoptosis

(induced by the DNA-damaging agent Etoposide) (Giorgi et al.,
2010). This finding is consistent with the increased sensitivity to
menadione observed in the K-RasG13D-ablated HKH2 cells.

In conclusion, our data describes for the first time the alterations
in Ca2+ regulation driven by a single oncogenic K-RasG13D allele in
colorectal cells. The enhancement of Ca2+ handling, mitochondrial

sequestration and cell death as a result of loss of K-RasG13D in two
isogenic models indicates that suppression of Ca2+ signalling is a
common response to K-RasG13D. Owing to its pleiotropic actions,

modulation by K-RasG13D in colorectal cells is likely also to
contribute to other aspects of cell physiology that serve to promote
cell transformation including enhancement of cell proliferation or
modulation of metabolism. The importance of Ras activation and

downstream pathways in cancers where mutated Ras is not the
primary cause, such as mutations in EGFR or B-Raf, raises the
possibility that the modulation of Ca2+ fluxes observed in this study

due to K-RasG13D is a common feature of many cancers and is thus
a target for intervention.

MATERIALS AND METHODS
Cell culture
HCT116 and DLD-1 cells (both K-RasG13D/WT) and their respective

isogenic derivatives HKH2 and DKO4 (both K-Ras-/WT) were a kind gift

of Senji Shirasawa (Fukuoka University, Japan) and have been previously

described (Shirasawa et al., 1993). Cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM; Life Technologies, Carlsbad, CA,

USA), containing 10% heat-inactivated fetal bovine serum (FBS)

(Invitrogen), 1% penicillin/streptomycin solution (5 units penicillin,

55 mg streptomycin) (Sigma, Dorset, UK). Cells were maintained at 37 C̊

under 5% CO2 in saturated humidity and were passaged upon reaching

80–90% confluency. Coverslips were coated with poly-L-lysine prior to

seeding of cells.

siRNA transfection
siGENOME SMART Pool for K-Ras and siGENOME non-targeting

control oligonucleotides (Dharmacon, Thermo) were reverse transfected

using Dharmafect-2 transfection reagent (Dharmacon, Thermo)

according to the manufacturer’s instructions. Briefly, 26105 cells in a

12-well dish or 46105 cells in a 6-well dish were transfected with siRNAs

at a final concentration of 25 nM. The medium overlying the cells was

exchanged after 24 h, and protein expression measured and Ca2+ imaging

experiments performed after a further 24 h.

Imaging of cytosolic Ca2+

Cytosolic Ca2+ was imaged as previously described (Peppiatt et al.,

2003). Briefly, cells were seeded onto poly-L-lysine-coated coverslips at

equivalent densities and imaged after 48 h. Prior to each experiment,

coverslips were mounted into stainless steel imaging chambers and

loaded with fura-2 AM (Life Technologies; 2 mM for 30 min, followed

by de-esterification in imaging buffer for a further 30 min). Coverslips

were imaged on the stage of a Nikon Eclipse TE200 inverted

epifluorescence microscope equipped with a Nikon PlanFluor 206/

0.75 NA multi immersion objective (Nikon, Kingston Upon Thames,

Surrey, UK). Excitation light at 340 and 380 nm was selected using a

motorized filter wheel (Sutter Industries, Novato, CA, USA) at a

frequency of 1 image pair every 3 s with an exposure of 200 ms, and

emitted light was selected using a 400 nm dichroic mirror and

filtered through a 460 nm long pass filter. Images were captured

using a Hamamatsu ORCA ER charge-coupled device (CCD) camera.

Three coverslips per cell type were imaged per day on three
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separate days, each coverslip containing at least 50 cells. Ca2+

concentration was calculated according to Grynkiewicz et al.

(Grynkiewicz et al., 1985).

Imaging of ER Ca2+

The FRET-based, genetically-encoded D1ER Ca2+ indicator was a kind

gift of Amy Palmer (University of Colorado, Boulder, USA). The affinity

of the indicator for Ca2+ has been determined to be 60 mM, allowing its

successful use to monitor resting and dynamic changes in ER luminal

[Ca2+] (Palmer et al., 2004). In experiments involving D1ER, cells were

seeded as indicated for ratiometric imaging but transfected with the

D1ER construct after 24 h using JetPei (PolyPlus Transfection, Ilkirch,

France) according to manufacturer’s specification. Cells were imaged

at 24 h post transfection. Coverslips were mounted in stainless steel

chambers and imaged on the stage of an Olympus IX81 inverted

microscope equipped with an Olympus UPlanSApo 206/0.75 NA air

objective. Excitation light at 435/10 nm was selected using a Polychrome

V monochromator (Olympus, Southend-on-Sea, UK). Emitted

fluorescence of CFP and YFP was simultaneously captured using a

Cairn Optosplit II image splitter (Cairn Research Limited, Graveney

Road, Faversham Kent). The image splitter unit was configured with a

515 nm dichroic mirror, which reflected the emitted fluorescence of CFP

(further filtered through a 485/40 nm band-pass filter), and passed the

emission of YFP (further filtered through a 535/30 nm band-pass filter).

Imaging of mitochondrial Ca2+

Mitochondrial Ca2+ was imaged as previously described using rhod-2

AM as a Ca2+ indicator (Szado et al., 2008). Prior to each experiment,

cells were loaded with rhod-2 AM (4 mM for 30 min at room

temperature followed by de-esterification in imaging buffer for a

further 30 min). Cells were imaged using a VisiTech VoxCell Scan

spinning disc confocal configured on a Nikon TE2000 microscope

equipped with a Nikon 606/1.25 NA oil immersion objective. Rhod-2

was excited by illumination with the 568 nm line of an argon/krypton

laser. Emitted fluorescence was filtered through a 575/50 nm band-pass

filter. Images were captured using a Hamamatsu ORCA ER CCD camera

controlled by the Visitech Voxcell Scan software. Ca2+ concentration was

calculated as previously described (Collins et al., 2001).

Immunoblotting
Cells were harvested 48 h post seeding and protein lysate was quantified

using a bicinchoninic acid (BCA) protein assay kit (Thermo Scientific).

An equivalent amount of each sample (15 to 50 mg) was loaded onto 7%

self-poured polyacrylamide gels or onto 4–12% gradient pre-cast gels

(NUPAGE; Life Technologies). Proteins were transferred from the gels

onto polyvinilidene fluoride (PVDF) membranes (for IP3Rs and SERCAs

and their loading controls) or nitrocellulose. Non-specific protein-binding

sites were first blocked by incubation for 1 h in TBS containing 0.05%

Tween 20 (TBS-T) and 5% milk. Membranes were subsequently probed

with primary antibodies (diluted as indicated below in TBS-T milk) for

1 h at room temperature or 4 C̊ overnight. Details of primary antibodies

are as follows: anti-K-Ras (dilution 1:500, AbdSerotec); anti-SERCA2b

[dilution 1:1000, kind gift of Frank Wuytack, University of Leuven

(Wuytack et al., 1989)]; anti-IP3R3 (dilution 1:1000, BD Biosciences);

anti-IP3R1 [dilution 1:1000, in-house generated (Kasri et al., 2004)]; anti-

calnexin (dilution 1:20,000, Sigma); anti-SERCA3 [dilution 1:1000, gift

of Frank Wuytack (Wuytack et al., 1994)]; anti-IP3R2 [dilution 1:500,

in-house generated (Harzheim et al., 2009)]; anti-calreticulin (1:1000;

Roderick et al., 1997); anti-active caspase 3 (1:1000, BD BioSciences);

anti-GAPDH (1:5000, Sigma) and anti-b actin (1:5000, AbCam). Excess

antibodies were removed by washing with TBS-T. Membranes were then

probed with either horseradish peroxidase (HRP)-conjugated (Jackson

Immunoresearch; 1:10,000 dilution) or fluorescently-labelled secondary

antibodies (Life Technologies and LI-COR; both at 1:5000). All

membranes were then washed in five exchanges of TBS-T and one of

TBS before band detection. HRP-conjugated antibodies were detected

by chemiluminescence (ECL) (Thermo Scientific) and subsequent

exposure to film, and fluorescently-labelled secondary antibodies (Life

Technologies and LI-COR) were detected by digital scanning (LI-COR

Odyssey). For band quantification, intensity values were obtained either

through analysis of digitized film (ImageJ, for ECL detection) or Image

Studio (for LI-COR detection). Bands of the protein of interest were

normalized against the corresponding loading control band. Following

normalization, protein abundance in the experimental conditions of

interest was normalized to the control.

Immunofluorescence
Immunofluorescence was performed as previously described (Higazi et al.,

2009). Briefly, at 48 h post seeding, cells were fixed with fixation buffer

(2% paraformaldehyde, 0.05% glutaraldehyde in PBS) and permeabilized

with 0.2% Triton X-100 in PBS. After incubation in blocking solution

(0.1% Triton X-100, 5% donkey goat serum diluted in PBS), cells were

probed with primary antibodies (diluted in blocking solution) for 1 h at

room temperature. Details of primary antibodies are as follows: anti-

cytochrome c (dilution 1:200, Santa Cruz Biotechnology); and anti-active

caspase 3 (1:200, BD BioSciences); anti-calnexin (1:500, Sigma). After

removal of excess antibodies by washing in 0.1% Triton X-100 in PBS,

cells were incubated with Alexa-Fluor-labelled secondary antibodies (Life

Technologies) for 1 h at room temperature. Excess antibody was

subsequently removed with five washes in 0.1% Triton X-100 in PBS

and two washes in PBS. Coverslips were mounted in Vectashield

containing DAPI, which also counterstained nuclei. Cells were imaged

by point-scanning confocal microscopy using appropriate laser lines for

excitation of the dyes (Olympus FV1000 confocal configured on an

Olympus IX81 inverted microscope using a 606/1.35 NA oil immersion

objective for calnexin and YFP imaging, and a Nikon A1R confocal

configured on a Nikon Ti inverted microscope and using 606/1.4 NA oil

immersion objective for imaging of cytochrome c and activated caspase).

Images were processed and analysed using Image J.

Cell cycle analysis
Cells in the medium were collected and then pooled with cells that

remained attached to their substrate that were harvested by trypsinization.

After washing in PBS, cells were fixed with 70% ethanol prior to RNase

treatment and staining with propidium iodide (PI). Stained cells were

analysed with a Becton Dickinson FACSCalibur flow cytometer (Oxford,

UK). Single cells in suspension were excited at 488 nm by an argon laser

and analysed according to the intensity of emitted fluorescence through a

585/42 band pass filter (Hanson et al., 2008a).

Menadione treatment of cells
At 24 h post seeding, cells were exposed to menadione diluted in culture

medium at concentrations between 25 and 100 mM. Control samples

cultured in parallel were also analysed. Cells were harvested 20 h after

exposure to menadione and processed for flow cytometric analysis or

immunofluorescence.

Statistical analysis
Where data was compared to normalized control a one-sample Student’s

t-test was employed. Other experiments were analysed by Student’s t-test

or two-way ANOVA. Significance was accepted at P,0.05.
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