

Open Research Online

The Open University's repository of research publications and other research outputs

Alzheimer's disease-associated peptide A₄₂ mobilizes ER Ca²⁺ via InsP₃R-dependent and -independent mechanisms

Journal Item

How to cite:

Jensen, Laura E.; Bultynck, Geert; Luyten, Tomas; Amijee, Hozeefa; Bootman, Martin D. and Roderick, H. Llewelyn (2013). Alzheimer's disease-associated peptide A42 mobilizes ER Ca2+ via InsP3R-dependent and -independent mechanisms. Frontiers in Molecular Neuroscience, 6, article no. 36.

For guidance on citations see FAQs.

© 2013 Jensen, Bultynck, Luyten, Amijee, Bootman and Roderick

Version: Version of Record

Link(s) to article on publisher's website: http://dx.doi.org/doi:10.3389/fnmol.2013.00036

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data <u>policy</u> on reuse of materials please consult the policies page.

oro.open.ac.uk

Alzheimer's disease-associated peptide $A\beta_{42}$ mobilizes ER Ca^{2+} via $InsP_3R$ -dependent and -independent mechanisms

Laura E. Jensen¹, Geert Bultynck², Tomas Luyten², Hozeefa Amijee³, Martin D. Bootman^{1†} and H. Llewelyn Roderick^{1*}

- ¹ Babraham Institute, Babraham Research Campus, Babraham, Cambridge, UK
- ² Laboratory of Molecular and Cellular Signaling, Department Molecular Cell Biology, K.U. Leuven, Leuven, Belgium
- ³ Senexis, Babraham Research Campus, Babraham, Cambridge, UK

Edited by:

Gaiti Hasan, National Centre for Biological Sciences, TIFR, India

Reviewed by

David S. Greenberg, The Hebrew University of Jerusalem, Israel David Yule, University of Rochester, USA

*Correspondence:

H. Llewelyn Roderick, Babraham Institute, Babraham, Cambridge, CB22 3AT, UK e-mail: llewelyn.roderick@ babraham ac uk

†Present address:

Martin D. Bootman, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK Dysregulation of Ca²⁺ homeostasis is considered to contribute to the toxic action of the Alzheimer's disease (AD)-associated amyloid- β -peptide (A β). Ca²⁺ fluxes across the plasma membrane and release from intracellular stores have both been reported to underlie the Ca²⁺ fluxes induced by A β ₄₂. Here, we investigated the contribution of Ca²⁺ release from the endoplasmic reticulum (ER) to the effects of A β ₄₂ upon Ca²⁺ homeostasis and the mechanism by which A β ₄₂ elicited these effects. Consistent with previous reports, application of soluble oligomeric forms of A β ₄₂ induced an elevation in intracellular Ca²⁺. The A β ₄₂-stimulated Ca²⁺ signals persisted in the absence of extracellular Ca²⁺ indicating a significant contribution of Ca²⁺ release from the ER Ca²⁺ store to the generation of these signals. Moreover, inositol 1,4,5-trisphosphate (InsP₃) signaling contributed to A β ₄₂-stimulated Ca²⁺ release. The Ca²⁺ mobilizing effect of A β ₄₂ was also observed when applied to permeabilized cells deficient in InsP₃ receptors, revealing an additional direct effect of A β ₄₂ upon the ER, and a mechanism for induction of toxicity by intracellular A β ₄₂.

Keywords: Alzheimer's disease, $A\beta$ oligomers, calcium/ Ca^{2+} , $InsP_3/IP_3$, $InsP_3$ receptors/ $InsP_3Rs$, endoplasmic reticulum/ER

INTRODUCTION

Alzheimer's disease (AD) is a progressive and irreversible brain disorder, which results in severe memory loss, behavioral as well as personality changes and a decline in cognitive abilities. While the most common type of AD remains idiopathic in origin, with age the most significant risk factor for disease onset (sporadic AD, sAD), ~5% of cases show a Mendelian pattern of inheritance (familial AD, fAD). The amyloid β-peptide (Aβ) is hypothesized to be central to the pathogenesis of both sporadic and familial AD (Hardy and Selkoe, 2002). AB is a small, hydrophobic polypeptide, consisting of 39-42 amino acid residues, which occurs principally as a 40 or 42 amino acid peptide, Aβ₄₀ and Aβ₄₂, respectively (Zhang et al., 2011). An imbalance between the production and clearance of Aβ, as occurs in fAD and sAD, respectively, leads to the accumulation of AB and, in turn, to its aggregation. This aggregation process represents a critical step in the pathogenesis of AD because the neurotoxic properties of AB are associated only with aggregated forms of the peptide (Kuperstein et al., 2010). Protein aggregation is highly dynamic and involves a wide range of intermediate structures such as oligomers, comprising dimers, trimers, dodecamers, and higher-molecular weight complexes, before aggregating into protofibrils and finally into mature amyloid fibrils (Dobson, 2003).

A mounting body of evidence now suggests that soluble oligomeric forms of $A\beta$ constitute the primary neurotoxic species

rather than monomers or fibrils (Lambert et al., 1998; Chromy et al., 2003; Gong et al., 2003; Demuro et al., 2005; Klyubin et al., 2005). Soluble oligomers have proved toxic when applied to cultured cells and primary neuronal cultures *in vitro* (Lambert et al., 1998; Bucciantini et al., 2002; Dahlgren et al., 2002; Kayed et al., 2003; Whalen et al., 2005). In addition, they are capable of inducing cognitive deficits when administered *in vivo* (Cleary et al., 2005; Rowan et al., 2007) and adversely affect hippocampal LTP *in vivo* (Walsh et al., 2002; Cleary et al., 2005; Klyubin et al., 2009, 2011)

Dysregulation of intracellular Ca²⁺ homeostasis is associated with cell exposure to Aβ and likely underlies its neurotoxic effects (Bezprozvanny and Mattson, 2008; Green and Laferla, 2008; Berridge, 2010; Demuro et al., 2010). A number of mechanisms by which Aβ elicits its effects on intracellular Ca²⁺ homeostasis have been put forward. These include direct effects on the plasma membrane, where it has been proposed to destabilize its structure (Mueller et al., 1995; Mason et al., 1996), to induce a generalized increase in membrane permeability (Bucciantini et al., 2002; Kayed et al., 2003) or to insert into the membrane forming cation-conducting pores (Arispe et al., 1993; Mueller et al., 1995; Mason et al., 1996; Bucciantini et al., 2002; Kayed et al., 2003; Kawahara, 2004; Simakova and Arispe, 2006; Arispe et al., 2007; Demuro et al., 2011). Aβ has also been reported to activate plasma membrane receptors, including N-methyl-d-aspartate (NMDA) receptors coupled to Ca²⁺ influx (Guo et al., 1996; Dobson,

Jensen et al. Mobilization of ER Ca $^{2+}$ by A eta_{42}

2003; Blanchard et al., 2004; De Felice et al., 2007), to alter neuronal excitability which, in turn, influences the extent of Ca^{2+} influx (Good et al., 1996) and to induce dysregulation of endoplasmic reticulum (ER) Ca^{2+} homeostasis (Ferreiro et al., 2004, 2006; Resende et al., 2008). In addition to acting from the extracellular space, where it accumulates in the diseased brain, $A\beta$ also has an intracellular site of action (Wirths et al., 2004). Indeed, as a result of uptake from the extracellular space or via its intracellular synthesis and processing, $A\beta$ has been reported to accumulate within the cell (Pierrot et al., 2004; Bayer and Wirths, 2011; Kaminski Schierle et al., 2011). This intracellular $A\beta$ is also neurotoxic and has been shown to target the ER and the mitochondria, inducing a stress response and causing permeability transition, respectively (Yao et al., 2009; Umeda et al., 2011).

In this study, we investigated (1) the contribution of Ca²⁺ mobilization from the ER to the increase in intracellular Ca²⁺ induced by oligomeric $A\beta_{42}$, (2) the mechanism (s) by which $A\beta_{42}$ elicited this effect, (3) the capacity for $A\beta_{42}$ to mobilize Ca²⁺ directly from the ER. To allow isolation of effects on the ER from other plasma membrane targets of $A\beta_{42}$, model cells systems were used that allowed fundamental aspects of ER Ca²⁺ regulation to be studied. We determined that Ca²⁺ release from the intracellular ER substantially contributed to the increase in intracellular Ca^{2+} concentration induced by oligomeric $A\beta_{42}$. The Aβ₄₂-induced Ca²⁺ elevation comprised InsP₃ dependent and independent components. Using DT40 cells deficient in the three InsP₃R isoforms that were permeabilized to allow direct access of $A\beta_{42}$ to the ER, we also demonstrated that it had the capacity to release Ca²⁺ from the ER independent of InsP₃Rs. Together, these data place the ER and Ca²⁺ released from it as central to the actions of both extracellular AB and AB that has reached an intracellular location.

MATERIALS AND METHODS

MATERIALS

Peptides were purchased from The American Peptide Company and rPeptide. Cell culture reagents and chemicals were from Invitrogen or Sigma, unless otherwise stated.

CELL CULTURE

Human neuroblastoma SH-SY5Y cells were cultured in F-12 Nutrient Mixture (Ham) containing FBS (10%), penicillin (100 units/ml), streptomycin (100 μ g/ml), non-essential amino acids (0.1 mM), and L-glutamine (2 mM). Prior to all experiments, SH-SY5Y cells were cultured overnight in Opti-MEM Reduced Serum Medium, containing FBS (1.5%), penicillin (100 units/ml), streptomycin (1.0 μ g/ml), non-essential amino acids (0.1 mM), and L-glutamine (2 mM). For live-cell Ca²⁺ imaging experiments, cells were plated onto poly-L-lysine-coated coverslips at a density of 3.2×10^4 cell/cm². For the MTT reduction assay, cells were plated at a density of 9×10^3 cells/cm². To overexpress GFP-tagged type 1 InsP₃ 5'-Phosphatase (GFP-5'P) or GFP (Peppiatt et al., 2004; Higazi et al., 2009), cells were infected with adenovirus for 8 h prior to overnight culture. Culture of DT40 cells and DT40 cells deficient in the three InsP₃R

isoforms (DT40 TKO) was performed as previously described (Tovey et al., 2006).

PREPARATION OF $A\beta_{42}$ OLIGOMERS

Wild type and scrambled $A\beta_{42}$ were obtained at a purity of >95%. Peptide mass was verified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and peptides from the same batch were used throughout. Samples of synthetic Aβ₄₂ oligomers were prepared as previously described (Demuro et al., 2005) and remained stable for at least 3 weeks. Samples of Aβ₁₋₄₂ scrambled peptide (KVKGLIDGAHIGDLVYEFMDSN SAIFREGVGAGHVHVAQVEF) were prepared in the same way as Aβ₄₂ oligomers. All Aβ samples were stored at 4°C and were used within 10-15 days of preparation. Toxicity of Aβ₄₂ preparations was confirmed by MTT assay before use in Ca²⁺ imaging experiments (Figure S1A). The oligomeric nature of the Aβ₄₂ preparation was established by surface plasmon resonance (SPR) spectroscopy using an antibody specific to oligomeric $A\beta_{42}$ (Figure S1B). All $A\beta_{42}$ concentrations stated are based on the molar mass of the peptide.

LIVE CELL Ca²⁺ IMAGING

Methods for single cell analysis of intracellular Ca²⁺ concentration were as previously described (Peppiatt et al., 2003). Cells were loaded at 37°C with 2 µM of the acetoxymethyl (AM) ester form of fura-2 for 30 min followed by an equivalent period in dye free media to allow de-esterification of the indicator. Imaging experiments were performed using either Ca²⁺containing (121 mM NaCl, 5.4 mM KCl, 0.8 mM MgCl₂, 1.8 mM CaCl₂, 6 mM NaHCO₃, 25 mM HEPES, 5.5 mM glucose, pH 7.3) or Ca²⁺ free (as for Ca²⁺ containing with 1.8 mM CaCl₂ replaced with 1 mM EGTA) buffer as indicated. Fura-2 imaging was carried out using an imaging system configured around a Nikon TE300 inverted epi-fluorescence microscope equipped with a 20×0.75 NA multi-immersion objective. Samples were illuminated by alternate excitation at 340 and 380 nm using a Sutter filter changer (340HT15 and 380HT15; Sutter Industries) and emitted light was filtered at >460 nm (1 ratio pair per 2 s). Images were captured using a Hamamatsu ORCA ER CCD camera. The imaging system was controlled with Ultraview software (PerkinElmer Life Sciences Ltd., UK). Acquired images were processed with Ultraview software and analyzed in MATLAB. Background subtracted fura-2 ratios were calibrated according to standard procedures (Grynkiewicz et al., 1985), using the maximum and minimum ratio values obtained through exposing cells sequentially to Ca²⁺ free and Ca²⁺ containing imaging buffer to which 2 µM ionomycin had been added. Parameters analyzed from the Ca²⁺ responses included the peak amplitude, the time to peak and the integral of the response (the area under the curve) and the percentage of responding cells.

InsP₃-induced Ca²⁺ release (IICR) from permeabilized wild type and InsP₃R null DT40 cells (three InsP₃R isoforms deleted by homologous recombination; DT40 TKO) (Sugawara et al., 1997) was performed as previously described (Tovey et al., 2006). Briefly, the ER of cells was loaded with the low-affinity Ca²⁺ indicator mag-fluo-4 and A β -induced Ca²⁺ release was measured

Jensen et al. Mobilization of ER Ca $^{2+}$ by A eta_4 2

from the saponin-permeabilized cells using a fluorescence plate reader (FlexStation 3, Molecular Devices).

MTT REDUCTION ASSAY

The Cell Titer 96 Non-Radioactive Cell Proliferation Assay (Promega) was used to validate the cytotoxic effect of Aβ₄₂ on SH-SY5Y cells and was performed according to manufacturer's instructions. Briefly, cells were incubated with $A\beta_{42}$ (n =4) for 24 h prior to the addition of the MTT dye solution and a further 4h incubation at 37°C, 5% CO₂. Thereafter, the solubilization/stop solution was added and incubated overnight at room temperature. Absorbances were read at 570 nm with a reference wavelength of 650 nm using a fluorescence plate reader (Synergy HT, BIO-TEK). The data is expressed as the percentage of MTT reduction relative to both live- and dead-cell controls and thus represents the percentage of viable cells. $A\beta_{42}$ samples were considered to be toxic if 25-40% of cells remained metabolically healthy at an $A\beta_{42}$ concentration of $1 \mu M$ and if more than 50% remained metabolically healthy at a concentration of 100 nM.

STATISTICAL ANALYSIS

Data is presented as the mean value of the combined datasets \pm SEM. Statistical significance was determined by Student's *t*-test (two-tailed). Data was accepted as significant when p < 0.05 and is denoted by *p < 0.05, **p < 0.01, or ***p < 0.001.

RESULTS

INTRACELLULAR Ca^{2+} IS ELEVATED IN CELLS EXPOSED TO OLIGOMERIC $A\beta_{42}$

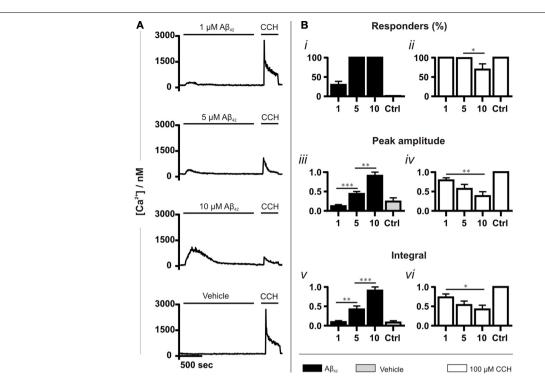
Experiments were first performed to validate the Ca²⁺ mobilizing properties of oligomeric Aβ₄₂ over the concentration range of its toxicity. Application of $A\beta_{42}$ spanning its cytotoxic range (1, 5 and 10 µM) caused an elevation in intracellular Ca²⁺ (Figure 1A). The increase in cytosolic Ca²⁺ concentration immediately followed the addition of AB42, developed to a peak within minutes of application and subsequently returned to baseline, despite the continued presence of the peptide. No Ca²⁺ responses were detected when Aβ₄₂ below 1 μM was applied (data not shown). Between 1 μM and 10 μM Aβ, the number of responding cells, the peak amplitude and the integral of the Ca²⁺ responses increased in a concentration-dependent manner. The number of responding cells reached 100% at 5 µM Aβ₄₂ (Figures 1Bi,iii,v). To test cell viability as well as to determine whether metabotropic Ca²⁺ signaling was affected by Aβ, carbachol (CCH) was applied subsequent to AB. CCH elicited Ca²⁺ responses in 100% of cells pre-exposed to 1 or 5 µM oligomeric $A\beta_{42}$ or to a vehicle control (10%) (**Figures 1Bii,iv,vi**). At 10 μM Aβ, however, the number of cells responding to CCH was significantly reduced (Figure 1Bii). The peak amplitude and integral of the Ca²⁺ responses to CCH subsequently applied were inversely related to the magnitude of the Ca²⁺ responses elicited by oligomeric $A\beta_{42}$ (Figures 1Biv,vi). This observation suggested that exposure to $A\beta_{42}$ oligomers was depleting the intracellular CCH-sensitive ER Ca²⁺ store. These Ca^{2+} mobilizing effects of oligomeric A β_{42} were significantly greater than observed in cells exposed to $A\beta_{42}$ that had been

prepared in a manner to yield a monomeric form of the peptide (**Figures S2, S1B**). From these results, due to its potency in mobilizing Ca^{2+} whilst preserving agonist responses, a concentration of $5\,\mu\text{M}$ oligomeric $A\beta_{42}$ was selected for use in subsequent experiments.

$A\beta_{42}$ OLIGOMER-INDUCED Ca^{2+} TRANSIENTS ARE PEPTIDE SEQUENCE SPECIFIC

As a control for the application of peptide, experiments were also performed using a scrambled A β sequence, which had been prepared in the same manner as the wild type A β_{42} . Although significantly less toxic than the wild type sequence (**Figure S1A**), scrambled A β peptide also evoked Ca²⁺ responses in all cells (**Figure 2Ai**). However, consistent with its lower toxicity, both the amplitude and the integral of the Ca²⁺ transients elicited by scrambled A β were significantly lower than those induced by oligomeric A β_{42} and, in addition, they required a significantly longer time to reach peak (**Figures 2Bi,Ci,Di**). Furthermore, concordant with the less potent effect of scrambled A β in mobilizing intracellular Ca²⁺, the amplitude and integral of CCH-induced Ca²⁺ transients elicited following prior exposure to scrambled A β were significantly greater than those stimulated following prior exposure to oligomeric A β_{42} (**Figures 2Bii,Cii,Dii**).

Taken together, the comparison of the effects of A β scramble and oligomeric A β_{42} demonstrates that the amino acid sequence of A β_{42} has potent Ca²⁺ mobilizing properties, which are distinct from the action of A β scramble.


$A\beta_{42}$ OLIGOMERS MOBILIZE Ca^{2+} FROM INTRACELLULAR STORES

The reduced magnitude of CCH-induced Ca^{2+} signals observed in cells previously exposed to oligomeric $A\beta_{42}$ suggested that this form of $A\beta_{42}$ was exerting an effect on intracellular Ca^{2+} stores. Therefore, we tested the relative contributions of Ca^{2+} influx from the extracellular space and its release from intracellular stores to $A\beta_{42}$ -induced Ca^{2+} transients.

To determine the contribution of extracellular Ca^{2+} and Ca^{2+} influx to $A\beta_{42}$ oligomer-induced Ca^{2+} transients, we performed experiments using Ca^{2+} -free imaging buffer. Under these conditions, $A\beta_{42}$ oligomers retained their ability to induce Ca^{2+} responses, with 100% of cells responding (**Figure 3Ai**). While no significant difference was observed in the peak amplitude (**Figure 3Aiii**) of $A\beta_{42}$ oligomer-induced Ca^{2+} transients, the integral of the response was significantly decreased in the absence of extracellular Ca^{2+} (**Figure 3Av**).

In contrast to the $A\beta_{42}$ oligomer-induced Ca^{2+} response, the peak amplitude and the integral of the Ca^{2+} responses to CCH applied following $A\beta_{42}$ oligomer exposure were significantly decreased by removal of extracellular Ca^{2+} from the imaging buffer (CCH, after $A\beta_{42}$; **Figures 3Aiv,vi**). This effect on the CCH-induced Ca^{2+} responses is likely due to lack of store-operated Ca^{2+} entry, which would replenish the Ca^{2+} released from stores by $A\beta_{42}$. Indeed, the peak amplitude and the integral of CCH-induced Ca^{2+} responses elicited in Ca^{2+} free buffer were significantly greater in naïve cells (CCH, no $A\beta_{42}$) than when $A\beta_{42}$ oligomers were previously applied (**Figures 3Aiv,vi**). Since $A\beta_{42}$ oligomer-induced Ca^{2+} transients were not significantly affected by removal of extracellular Ca^{2+} , these results suggest

Jensen et al. Mobilization of ER Ca^{2+} by $A\beta_{42}$

FIGURE 1 | $A\beta_{42}$ oligomers induce Ca^{2+} transients in a concentration-dependent manner. (A) Example fura-2 Ca^{2+} traces of CA^{2+}

SH-SY5Y cells exposed to a concentration range of $A\beta_{42}$ oligomers followed by $100\,\mu\text{M}$ CCH. A trace taken from cells in which $A\beta_{42}$ oligomers were substituted with double-distilled water (dd H_2O ; vehicle) is also shown (for each group, n > 744 cells). **(B)** Quantitative analysis of the Ca^{2+} responses illustrated in A. The magnitude of Ca^{2+} responses elicited by $A\beta_{42}$ oligomers,

dd H₂O and CCH is presented as (**Bi,ii**) percentage of responding cells, (**Biii,iv**) peak amplitude and (**Bv,vi**) integral of the response. A β_{42} oligomer-induced Ca²⁺ transients were normalized to the responses induced with the highest concentration (10 μ M) of the respective A β_{42} preparation. CCH-induced Ca²⁺ responses were normalized to control experiments conducted on the same experimental day. Bar graphs are mean \pm SEM from at least three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001.

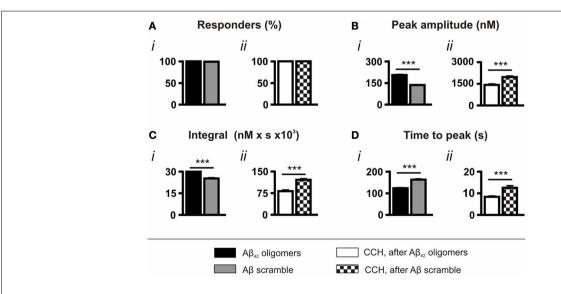


FIGURE 2 | $Aβ_{42}$ oligomer-induced Ca^{2+} transients are sequence specific. Bar charts illustrating the magnitude of Ca^{2+} responses elicited by SH-SY5Y cells following the application of $5 \mu M$ $Aβ_{42}$ oligomers or Aβ scramble and $100 \mu M$ CCH (n > 370 cells). Data

is presented as **(A)** percentage of responding cells, **(B)** peak amplitude, **(C)** integral of the response, **(D)** time to peak. Bar graphs are mean \pm SEM from at least three independent experiments. ****p < 0.001.

Mobilization of ER Ca²⁺ by A β_{42}

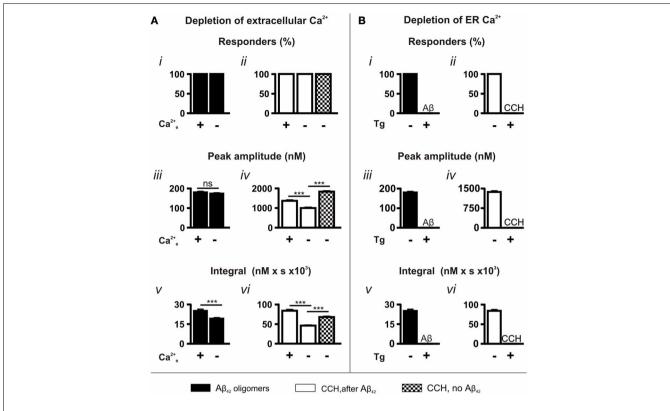


FIGURE 3 | $A\beta_{42}$ oligomer-induced Ca^{2+} transients arise through release from the ER Ca^{2+} store. Bar charts illustrating the magnitude of Ca^{2+} responses elicited following the manipulation of (A) extracellular (n>218 cells) and (B) ER Ca^{2+} concentrations (n>512 cells). The magnitude of Ca^{2+}

Jensen et al

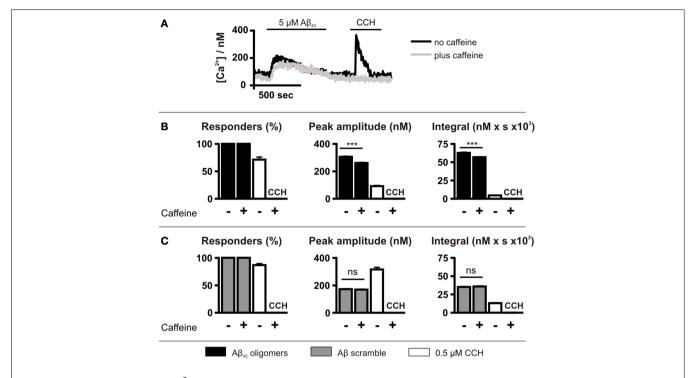
responses elicited by $5\,\mu\text{M}$ A β_{42} oligomers and $100\,\mu\text{M}$ CCH is presented as (i,ii) percentage of responding cells, (iii,iv) peak amplitude and (v,vi) integral of the response. Bar graphs are mean \pm SEM from at least three independent experiments. ***P < 0.001.

that oligomeric $A\beta_{42}$ and CCH mobilize Ca^{2+} from a common intracellular Ca^{2+} pool.

The requirement of Ca^{2+} release from the ER Ca^{2+} store for the Ca^{2+} transients elicited by $A\beta$ -induced was next investigated. To this end, ER Ca^{2+} stores were depleted by exposure of cells the SERCA pump inhibitor thapsigargin (Tg; 2 μ M, 15 min) prior to the application of $A\beta_{42}$. In the absence of replete ER Ca^{2+} stores, $A\beta_{42}$ -induced Ca^{2+} transients were completely abrogated (**Figures 3Bi,iii,v**). Similarly, CCH-induced Ca^{2+} responses were eliminated in Tg-treated cells (**Figures 3Bii,Biv,Bvi**), confirming the effect of Tg. Taken together, these experiments establish that $A\beta_{42}$ oligomers mobilize Ca^{2+} from the ER.

Aβ₄₂-INDUCED Ca²⁺ RELEASE OCCURS IN PART THROUGH INSP₃Rs

Having determined that $A\beta_{42}$ oligomers mobilize Ca^{2+} from the intracellular ER Ca^{2+} store, we aimed to identify the mechanism by which Ca^{2+} release occurs. We therefore tested whether $A\beta_{42}$ was causing Ca^{2+} release from the ER through activation of InsP₃R or ryanodine receptor (RyR) Ca^{2+} release channels localized to this organelle.


Although SH-SY5Y cells have been reported to express functional RyRs, application of caffeine (10 mM), an agonist of the three RyR isoforms (10 mM) did not elicit a Ca²⁺ response in the SH-SY5Y cells used in this study (**Figure S2A**). Furthermore, the neuronally-expressed type 2 RyR could not be detected by

immunoblot analysis (**Figure S2B**). Based on these observations, a role for RyR2 in $A\beta_{42}$ oligomer-mediated Ca^{2+} release was ruled out.

SH-SY5Y cells express InsP₃Rs and elicit robust Ca²⁺ responses to InsP₃-generating agonists including CCH (Tovey et al., 2001) (**Figures 1–3**). Therefore, we focused our investigation on the contribution of InsP₃Rs to A β ₄₂-induced Ca²⁺ transients. To abrogate InsP₃-mediated Ca²⁺ responses, InsP₃ signaling was inhibited pharmacologically with 10 mM caffeine (Parker and Ivorra, 1991; Bezprozvanny et al., 1994) or was prevented by adenoviral-mediated overexpression of GFP-5′P, which metabolizes the second messenger InsP₃ to inactive InsP₂ (Higazi et al., 2009). To exclude the contribution of Ca²⁺ influx to the A β ₄₂ oligomer-induced Ca²⁺ transients, these experiments were performed in the absence of extracellular Ca²⁺.

Caffeine application did not affect the number of cells exhibiting Ca^{2+} responses following $A\beta_{42}$ oligomer application, with 100% of cells responding (**Figure 4B**). However, caffeine significantly decreased the peak amplitude and the integral of the $A\beta_{42}$ oligomer-induced Ca^{2+} transients (**Figure 4B**). In contrast, $A\beta$ scramble-induced Ca^{2+} transients were unaffected by caffeine application (**Figure 4C**). Ca^{2+} responses to $0.5\,\mu\text{M}$ CCH were abolished by caffeine, demonstrating its inhibitory effect upon IICR (**Figures 4A–C**).

Jensen et al. Mobilization of ER Ca^{2+} by $A\beta_{42}$

FIGURE 4 | $A\beta_{42}$ oligomer-induced Ca^{2+} release is sensitive to caffeine. (A) Imaging protocol employed to investigate the involvement of InsP₃Rs in $A\beta_{42}$ oligomer-mediated Ca^{2+} release from the ER. InsP₃Rs were inhibited by co-administration of caffeine. (**B,C**) Bar charts illustrating the magnitude of Ca^{2+} responses elicited by SH-SY5Y cells following the application of $5\,\mu\text{M}$

 $A\beta_{42}$ oligomers (n>780 cells) **(B)** or $A\beta$ scramble (n>144 cells) **(C)** and $0.5\,\mu\text{M}$ CCH (n=512 cells) in the presence or absence of 10 mM caffeine. Data is presented as percentage of responding cells, peak amplitude and integral of the response. Bar graphs are mean \pm SEM from at least three independent experiments. ***P<0.001.

Although caffeine inhibits InsP₃Rs (Bezprozvanny et al., 1994), it also acts on targets other than the InsP₃R such as cyclic nucleotide phosphodiesterases and phospholipase C (PLC) (Toescu et al., 1992; Taylor and Broad, 1998). Therefore, to investigate further the role of InsP₃ signaling in the generation of Aβ₄₂ oligomer-induced Ca²⁺ transients, InsP₃ signaling was inhibited by GFP-5'P overexpression. Using this strategy, InsP₃-mediated Ca²⁺ signals induced by CCH were prevented, validating this approach for suppression of InsP₃ signaling (Figure 5A). As observed for caffeine, however, GFP-5'P overexpression did not prevent Aβ₄₂ oligomer-induced Ca²⁺ transients, with 100% of cells responding (Figure 5B). However, the peak amplitude and the integral of $A\beta_{42}$ oligomer-induced Ca^{2+} transients were significantly decreased by overexpression of GFP-5'P (Figure 5B) when compared to the magnitude of Ca²⁺ transients in control cells, expressing GFP alone. Significantly, Aß scramble-induced Ca²⁺ transients were not affected by GFP-5'P overexpression with no significant impact of its expression upon the peak amplitude or the integral of Aβ scramble-induced Ca²⁺ transients (**Figure 5C**). Taken together, these results demonstrate that Ca²⁺ transients elicited by AB₄₂ oligomers arise as a result of release from the ER intracellular Ca²⁺ store and that activation of InsP₃Rs contributes to this effect.

Aβ₄₂ OLIGOMER-INDUCED Ca²⁺ LEAK FROM THE ER

The data presented above indicates that externally applied $A\beta_{42}$ rapidly induces an increase on cytosolic Ca^{2+} that involves

InsP₃-dependent and -independent Ca^{2+} release from the ER. Since $A\beta_{42}$ has also been shown to elicit some of its cytotoxic effects as a result of intracellular accumulation (Wirths et al., 2004), we investigated whether it mobilized Ca^{2+} from the ER when directly applied. We also tested whether $InsP_3Rs$ were required for its intracellular action.

To this end, an established permeabilized cell high-throughput functional assay of ER Ca²⁺ release was used (Tovey et al., 2006). This model uses as substrate for specific analysis of ER Ca²⁺ release, a plasma membrane-permeabilized preparation of the DT40 chicken B-lymphocyte cell line. A derivative of this cell line in which the 3 InsP₃R isoforms have been deleted by homologous recombination (DT40 TKO), allows the requirement for InsP₃Rs for Ca²⁺ release to be tested (Sugawara et al., 1997). Cell permeabilization and substantial dilution in intracellular buffer rules out the contribution of endogenously generated InsP3 to signaling in this assay. Using this assay, a significantly greater InsP₃ independent ER Ca²⁺ leak was observed in both wild-type (p = 0.002) and DT40 TKO cells (p = 0.0195) exposed to A β_{42} oligomers compared to the passive Ca²⁺ leak detected in each cell type (Figures 6A,B). The maximal Ca²⁺ leak rate induced by Aβ₄₂ oligomers was not significantly different between wildtype and DT40 TKO cells (p = 0.2606, Figure 6C), suggesting that InsP₃Rs were not required for A β_{42} oligomers to trigger Ca²⁺ release.

A β scramble did not increase the rate of the Ca²⁺ leak in DT40 cells (p = 0.2528) or in DT40 TKO cells (p = 0.0993) compared

Jensen et al. Mobilization of ER Ca $^{2+}$ by A eta_4 2

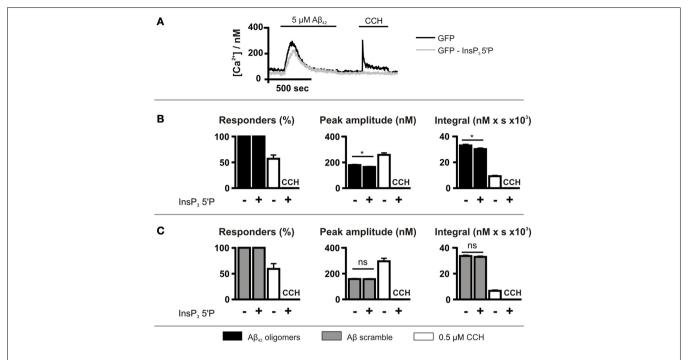


FIGURE 5 | $A\beta_{42}$ oligomer-induced Ca^{2+} release occurs is reduced by InsP₃ 5′P expression. (A) Imaging protocol employed to investigate the involvement of InsP₃Rs in $A\beta_{42}$ oligomer-mediated Ca^{2+} release from the ER. InsP₃ was metabolized by overexpression of InsP₃ 5′P. (B,C) Bar charts illustrating the magnitude of Ca^{2+} responses elicited by SH-SY5Y cells

infected with InsP $_3$ 5′P or GFP alone following the application of 5 μ M A β_{42} oligomers (n > 207 cells) (**B**) or A β scramble (n > 115 cells) (**C**) and 0.5 μ M CCH (n > 55 cells). Data is presented as percentage of responding cells, peak amplitude and integral of the response. Bar graphs are mean \pm SEM from at least three independent experiments. *P < 0.05.

to the passive Ca^{2+} leak observed in each cell type (**Figure 6B**), and thus there was no significant difference in the maximal Ca^{2+} leak rate following A β scramble application between these two cell types (p=0.2522, **Figure 6C**). Importantly, a significant difference between the Ca^{2+} leak rates triggered by exposure to A β_{42} oligomers and A β scramble in wild-type DT40 cells (p=0.0056) and DT40 TKO cells (p=0.0045) was observed, indicating that A β -induced Ca^{2+} leak from the ER is dependent and specific to the amino acid sequence of A β_{42} . Taken together, these results suggest that A β_{42} oligomers trigger a Ca^{2+} leak from the ER, which does not depend upon a direct interaction with InsP₃Rs.

DISCUSSION

Here we show that the oligomeric form of the AD-associated peptide $A\beta_{42}$ has potent Ca^{2+} mobilizing properties and we identify mechanisms responsible for its action. Using both intact and permeabilized cell assays to investigate the effects of extracellular and internalized $A\beta_{42}$, respectively, we establish that Ca^{2+} release from the ER makes the greatest contribution to the Ca^{2+} mobilizing effects of $A\beta_{42}$. The $InsP_3$ signaling pathway also contributes to the Ca^{2+} mobilizing properties of oligomeric $A\beta_{42}$ in intact cells. $InsP_3Rs$ were not required for $A\beta_{42}$ -stimulated Ca^{2+} flux in permeabilized cells ruling out a direct regulation of $InsP_3Rs$ by $A\beta_{42}$.

Central to the Ca^{2+} hypothesis of amyloid toxicity is the property of $A\beta$ to induce Ca^{2+} elevations in its target cells. This sets in motion a cascade of events, which culminates in neuronal death. Ever since this hypothesis was put forward more than 20

years ago (Khachaturian, 1989, 1994), numerous reports have described AB-induced changes in intracellular Ca2+ in a number of cell types including primary neurons and astrocytes as well as neuroblastoma cell lines (Abramov et al., 2004b; Demuro et al., 2005). While there is general consensus that AB affects Ca²⁺ homeostasis, the mechanisms underlying this action of AB are many. Contributing to this diversity are the different experimental models used, the peptide sequence applied, the conformational state of the peptide and the method used for peptide preparation. Indeed, a number of shorter AB sequences have been employed in in vitro studies and depletion of ER Ca²⁺ store content reported (Ferreiro et al., 2004, 2008). Since Aβ₄₂ is considered to be more relevant to the pathology of AD, we focused on its effects on intracellular Ca2+ homeostasis. Not only is an accumulation of Aβ₄₂ observed in AD, this longer and more hydrophobic peptide is also more prone to self-assemble than $A\beta_{40}$, the other principle length at which $A\beta$ occurs. As a result, Aβ₄₂ exerts a greater degree of neurotoxicity (Jarrett and Lansbury, 1993). Consistent with the growing body of evidence that soluble oligomeric forms of AB constitute the primary neurotoxic species (Walsh et al., 2002; Gong et al., 2003; Cleary et al., 2005; Klyubin et al., 2005), this species of AB₄₂ potently induced Ca²⁺ fluxes and cytotoxicity in this study (Figures 1, 2 and Figure S2). Highlighting the requirement for appropriate peptide controls when studying $A\beta_{42}$, Ca^{2+} release and cytotoxicity was also induced by a scrambled peptide sequence of $A\beta_{42}$, although the magnitude of these responses was significantly lower than that induced by the wild type sequence. From these

Jensen et al. Mobilization of ER Ca^{2+} by $A\beta_{42}$

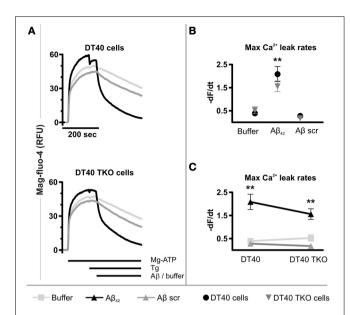


FIGURE 6 | Aβ₄₂ oligomers stimulate Ca²⁺ release from the ER of permeabilized cells. (A) Representative traces of mag-fluo-4 fluorescence (relative fluorescence units, RFU) in permeabilized DT40 cells and DT40 TKO cells, illustrating changes in ER luminal Ca²⁺ levels as a function of time in response to Aβ₄₂ oligomers, Aβ scramble and buffer alone. Data represents the mean of three measurements. (B,C) Initial quantitative analysis of the maximum Ca²⁺ leak rates from the ER of permeabilized DT40 cells and DT40 TKO cells triggered by Aβ₄₂ oligomers, Aβ scramble and buffer, respectively. The maximal Ca²⁺ leak rate was calculated by taking the maximal value of the first derivative of the fluorescence values to the time. Data were calculated as −dF/dt and represents the mean Ca²⁺ leak rate obtained from three measurements in RFU over time (RFU/s).

***p < 0.01.

results, we concluded that the peptide sequence of $A\beta_{42}$ was the major contributor to the toxicity and Ca²⁺ mobilizing properties. The temporal properties of the Ca²⁺ transients we observed were reminiscent of those reported elsewhere, being relatively slow in reaching peak and returning to baseline levels after a few minutes (Demuro et al., 2005; Simakova and Arispe, 2006). The return of these Ca²⁺ signals to baseline does, however, suggest that the Ca²⁺ elevations induced by Aβ₄₂ were not immediately toxic. The Ca²⁺ mobilizing properties of the scrambled peptide, however, may reflect the previously described intrinsic properties of an oligomeric/amyloid peptide (Bucciantini et al., 2002; Yoshiike et al., 2008). For example, oligomeric forms of polyQ and insulin have been shown to induce Ca²⁺ transients (Demuro et al., 2005). The solvent HFIP used for preparation of the peptide has also previously been shown to exhibit cytotoxicity and to affect ion conductance of membranes (Capone et al., 2009).

Both Ca^{2+} influx from the extracellular space and release from ER-localized intracellular stores have been reported to be induced by A β and involved in its toxic action (Blanchard et al., 2004; Ferreiro et al., 2004, 2006; Kayed et al., 2004; Demuro et al., 2005, 2011; Kelly and Ferreira, 2006; Simakova and Arispe, 2006; Arispe et al., 2007; De Felice et al., 2007; Resende et al., 2008; Demuro and Parker, 2013). Although Ca^{2+} entry from the extracellular

space was a component of the Ca^{2+} elevation induced by $A\beta_{42}$ in this study, the greatest contribution was due to release from the ER. Moreover the lack of an effect of removal of extracellular Ca^{2+} upon the initial peak of the Ca^{2+} response or the number of responding cells suggested that Ca^{2+} entry across the plasma membrane was secondary to Ca^{2+} release from the ER. Since $A\beta_{42}$ was acting to deplete the ER stores, the Ca^{2+} influx could arise via a store-operated Ca^{2+} entry pathway. These observations are not, however, incompatible with an additional mechanism for Ca^{2+} entry via plasma membrane pores formed by $A\beta_{42}$, which have been shown to require a longer period to develop (Demuro et al., 2011). Whether the Ca^{2+} fluxes associated with the formation of membrane pores, which were generally local to the pore and were of a relatively small magnitude, contribute to the global Ca^{2+} transient is not clear (Demuro et al., 2011).

Analysis of the mechanisms underlying Ca^{2+} release from the ER revealed that while $InsP_3Rs$ contributed to $A\beta_{42}$ -induced Ca^{2+} release from the ER in intact cells, the greater part of the Ca^{2+} elevation induced by $A\beta_{42}$ was due to an alternative mechanism. However, IICR did not contribute to the Ca^{2+} responses induced by scrambled peptide. From these results, we concluded that $A\beta_{42}$ -induced Ca^{2+} release from the ER comprises an $A\beta_{42}$ sequence-specific component, which is $InsP_3$ -dependent, and a second component, which is peptide sequence- and $InsP_3$ -independent. Comparison of these $A\beta_{42}$ and $A\beta_{42}$ scrambled datasets reveals that although the $InsP_3$ -dependent component of the total $A\beta_{42}$ signal is relatively minor, when considered as a fraction of the $A\beta_{42}$ -specific Ca^{2+} signal (i.e., $A\beta_{42}$ — $A\beta_{42}$ scrambled Ca^{2+} transient), its importance is increased.

Our demonstration of the participation of InsP₃ signaling in $A\beta_{42}$ -induced Ca^{2+} responses provides robust evidence in support of this pathway in Aβ₄₂-mediated Ca²⁺ signals thus far. In particular, the use of InsP₃ 5'phosphatase overexpression to suppress InsP3 signaling is a highly selective strategy, overcoming issues regarding incomplete knockdown of InsP₃Rs and contribution of the isoforms not targeted when using siRNA approaches. The inhibition of Ca²⁺ signals by caffeine is also consistent with a role for the InsP₃ signaling pathway in the Ca²⁺ mobilizing effects of Aβ (Parker and Ivorra, 1991; Bezprozvanny et al., 1994). Not only does caffeine inhibit InsP₃Rs directly (Bezprozvanny et al., 1994), by also inhibiting PLC, caffeine is a potent inhibitor of InsP₃ generation (Taylor and Broad, 1998). These findings are consistent with the reduction in the $A\beta_{42}$ -induced Ca^{2+} transient observed following application of the PLC inhibitor U73122 (Resende et al., 2008) although U73122 has numerous non-specific effects. The mechanism by which InsP3 signaling is engaged by AB42 in this study remains to be established. Since the effects of inhibition of InsP₃ signaling persist in the absence of extracellular Ca²⁺, activation of PLC and InsP₃ generation by A β_{42} -stimulated Ca²⁺ influx can be excluded. Thus, a more likely scenario would involve Aβ₄₂ engagement of a PLC-coupled G protein coupledreceptor (GPCR). Indeed, a number of different GPCRs, including metabotropic glutamate receptors, are activated by $A\beta_{42}$, contributing to modulation of LTP, Aβ₄₂ synthesis and processing and cytotoxicity (Wang et al., 2004; Thathiah and De Strooper, 2011).

Jensen et al. Mobilization of ER Ca $^{2+}$ by A eta_4 2

The internalization of AB from the extracellular space (Bucciantini et al., 2004; Pierrot et al., 2004; Wirths et al., 2004; Kaminski Schierle et al., 2011) raises a further possibility that Aβ acts to either directly activate/sensitize InsP₃Rs or to alter InsP₃ generation/metabolism. Since significant intracellular Aβ₄₂ accumulation would require up to 1 h (Bucciantini et al., 2004; Kaminski Schierle et al., 2011), it is unlikely that this endocytosed $A\beta_{42}$ contributes to the acute modulation of Ca^{2+} fluxes observed in this study and elsewhere in intact cells. Endocytosis of Aβ₄₂ may, however, contribute to the more chronic effects on Ca²⁺ homeostasis as well as cytotoxicity previously reported (Ferreiro et al., 2004, 2006; Resende et al., 2008). The possibility that Aβ₄₂ could directly affect ER Ca²⁺ homeostasis from an intracellular location was therefore also considered. Using a permeabilized cell assay to allow control of cytosolic conditions and access of $A\beta_{42}$ to the ER, an $A\beta_{42}$ -stimulated Ca^{2+} efflux from the ER was observed. Unlike that observed for intact cells, the difference between $A\beta_{42}$ and $A\beta_{42}$ scrambled was dramatic, revealing a highly specific effect of Aβ₄₂ upon ER Ca²⁺ mobilization. These effects were observed in the absence of exogenous InsP₃ suggesting that the effects were InsP₃R-independent. The extensive dilution of cytosol following permeabilization of the DT40 cells would also likely preclude a contribution of Aβ₄₂stimulated InsP₃ generation. More significantly, InsP₃Rs were not required for the Ca^{2+} mobilizing properties of $A\beta_{42}$, since deficiency in all three InsP₃R isoforms did not affect the Ca²⁺ mobilizing properties of $A\beta_{42}$. The absence of a requirement for InsP₃Rs for Aβ₄₂-stimulated Ca²⁺ flux in the permeabilized cell system does not rule out the possibility that IICR contributes to Ca^{2+} fluxes and toxicity mediated by intracellular A β_{42} . Indeed, by activating Ca²⁺-sensitive PLC and generation of InsP₃, Ca²⁺ mobilized by Aβ₄₂ could promote IICR. Consistent with this notion, microinjected A β_{42} was recently shown to promote Ca²⁺ signals in Xenopus oocytes in a manner that involved InsP₃ generation (Demuro and Parker, 2013).

The depletion of the ER Ca^{2+} store by $A\beta_{42}$ has important implications for the mechanisms of its toxicity. Depletion of ER Ca^{2+} stores results in the accumulation of unfolded proteins and activation of the ER stress response, which via caspase 12 activation and Bap31 cleavage can subsequently induce mitochondrial apoptotic cascades (Verkhratsky, 2005; Xu et al., 2005; Mekahli et al., 2011). The engagement of InsP₃Rs during $A\beta_{42-}$ stimulated depletion of ER Ca^{2+} may be of greater consequence. Specifically, InsP₃R-induced Ca^{2+} release from the ER and its subsequent sequestration by neighboring mitochondria could lead to mitochondrial Ca^{2+} overload, permeability transition and death (Csordas et al., 2006). These pathways also lead to increased reactive oxygen species generation, which is commonly observed in AD (Ferreiro et al., 2004, 2008; Arduino et al., 2009; Clark et al., 2010).

The use of SH-SY5Y neuroblastoma cell line and permeabilized DT40 B-lymphocytes in this study, rather than primary neurons allowed careful dissection of the role of ER Ca^{2+} signaling to $A\beta$ -induced Ca^{2+} signals independent from Ca^{2+} fluxes that may arise in neurons as a result of electrical or synaptic activity. Moreover, using this cell line, contributions from other $A\beta$ targets described in neurons such as NMDA receptors are

excluded. Analogous to a number of other studies in electrically non-excitable primary and cultured cells including Xenopus oocytes (Demuro and Parker, 2013) astrocytes and PC12 cells (Abramov et al., 2003, 2004a; Simakova and Arispe, 2006), our data indicates that certain of the Ca²⁺ mobilizing properties of A β_{42} are neuron-independent and do not require the expression of any other of its reported targets. Fundamental aspects of the Ca²⁺ mobilizing properties of A β_{42} were further revealed and exemplified by the A β_{42} -stimulated Ca²⁺ flux from the InsP₃R-deficient ER of permeabilized DT40 B-lymphocytes. These latter data demonstrate for the first time that A β_{42} has the capacity to directly induce Ca²⁺ flux from the ER. Given the importance of the ER and InsP₃Rs in neuronal functions, future studies will be required to test whether InsP₃Rs contribute to A β -mediated neuronal pathology.

AUTHOR CONTRIBUTIONS

Laura E. Jensen: substantial contributions to conception and design, acquisition, analysis and interpretation of data as well as writing of manuscript. H. Llewelyn Roderick: substantial contributions to conception and design, interpretation of data as well as writing of manuscript. Geert Bultynck and Tomas Luyten: designed, acquired, analysed and interpreted data of **Figure 6**. Hozeefa Amijee: designed, acquired and interpreted data of **Figure 52**. Martin D. Bootman: proof-read manuscript.

ACKNOWLEDGMENTS

This study was supported by The Babraham Institute, Senexis, The Royal Society (University Research Fellowship to H. Llewelyn Roderick) and The Gates Cambridge Trust [Gates Cambridge Scholarship to Laura E. Jensen (née Allan)]. Work in the Geert Bultynck's laboratory was supported by the Research Council of the KU Leuven via the Concerted Actions program (GOA/09/012) and via an OT START (STRT1/10/044), and by the Interuniversity Attraction Poles Program (Belgian Science Policy; P6/28 and P7/13).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fnmol. 2013.00036/abstract

Figure S1 | Validating the toxicity and conformation of $A\beta_{42}$ oligomers. (A) Assessment of toxicity of homogeneous AB preparations. Bar chart illustrating the cytotoxic effects of $A\beta_{42}$ preparations upon SH-SY5Y cells determined using the MTT assay. Data is expressed as a percentage of MTT reduced by test samples to the dead cell controls following 24-h treatment with Aβ₄₂ oligomers and scrambled Aβ at the respective concentrations. (Bi) Schematic diagram illustrating the epitopes of A_{B42} recognized by the conformation dependent, anti-oligomer antibody, A11 (Kayed et al., 2003), and the sequence dependent, anti-amyloid antibody, 12F4 (Parvathy et al., 2001). (Bii,iii) Sensorgrams obtained from surface plasmon resonance spectroscopy, as described (Maezawa et al., 2008). A Biacore T-100, equipped with four flow cells on a sensor chip, was used for these real-time binding studies. Biotinylated Aβ₄₂ was prepared by mixing a 1:10 molar ratio of biotinylated and unbiotinylated $A\beta_{42}$. In preparation for the binding studies, Aβ₄₂ was injected onto a streptavidin chip at a concentration of 10 μM to immobilize Aβ₄₂by streptavidin-biotin

Jensen et al. Mobilization of ER Ca $^{2+}$ by A eta_{42}

coupling. The streptavidin chip of flow cell (Fc) 2 was partially (50%) and of Fc-4 fully saturated (100%) with A β_{42} oligomers. As a control, the surface of Fc-3 was partially saturated (50%) with A β_{42} monomers. Antibodies (Bii) A11 and (Biii) 12F4 were injected over the immobilized A β_{42} of each flow cell at a concentration of 50 μ g/ml and 10 μ g/ml, respectively. The injection of the anti-oligomer antibody, A11, was followed by a regeneration step prior to injection of 12F4. The binding of injected antibodies, present in the flow phase, to the immobilized A β_{42} was measured by response units (RU) elicited. All values were corrected for the RU obtained from the reference cell, flow cell 1, which was saturated with biotinylated A β_{42} only.

Figure S2 | Comparison of Ca²⁺ responses elicited by Aβ₄₂ oligomers and monomers in SH-SY5Y cells. (A) Imaging protocol employed to assess the effects of homogeneous preparations of Aβ₄₂ on the Ca²⁺ signaling capacity of fluo-4-loaded SH-SY5Y cells. Cellular Ca²⁺ responses were recorded by wide-field epifluorescence. The magnitude of Ca²⁺ responses elicited by $5\,\mu$ M Aβ₄₂ monomers and oligomers and the subsequent application of $100\,\mu$ M CCH is presented as (B) percentage of responding cells, (C) peak amplitude and (D) integral of the response. Soluble Aβ monomers and Aβ oligomers were prepared as previously described (Demuro et al., 2005). This method of Aβ preparation reportedly results in homogeneous populations of Aβ monomers and oligomers (also Figure S1B). All Aβ₄₂ concentrations stated were based on the molar mass of the peptide.

Figure S3 | Human neuroblastoma SH-SY5Y cells lack RyR expression. (A) Representative Ca^{2+} trace illustrating that SH-SY5Y cells do not elicit Ca^{2+} responses following the application of 10 mM caffeine, indicating that cells lack RyRs (n=239 cells). However, SH-SY5Y cells do exhibit $InsP_3$ -mediated Ca^{2+} responses. (B) Immunoblot analysis corroborating the lack of RyR2 expression in SH-SY5Y cells. RyR2 expression is observed in control samples of adult hippocampal tissue and primary hippocampal cultures maintained for 4, 8, 11, and 15 days *in vitro* (DIVs).

REFERENCES

- Abramov, A. Y., Canevari, L., and Duchen, M. R. (2003). Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 23, 5088–5095.
- Abramov, A. Y., Canevari, L., and Duchen, M. R. (2004a). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. *J. Neurosci.* 24, 565–575. doi: 10.1523/JNEUROSCI.4042-03.2004
- Abramov, A. Y., Canevari, L., and Duchen, M. R. (2004b). Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. *Biochim. Biophys. Acta* 1742, 81–87. doi: 10.1016/j.bbamcr. 2004.09.006
- Arduino, D. M., Esteves, A. R., Cardoso, S. M., and Oliveira, C. R. (2009). Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson's disease. *Neurochem. Int.* 55, 341–348. doi: 10.1016/j.neuint.2009.04.004
- Arispe, N., Diaz, J. C., and Simakova, O. (2007). Abeta ion channels. Prospects for treating Alzheimer's disease with Abeta channel blockers. *Biochim. Biophys. Acta* 1768, 1952–1965. doi: 10.1016/j.bbamem.2007. 03.014
- Arispe, N., Pollard, H. B., and Rojas, E. (1993). Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein Abeta1-40 in bilayer membranes. Proc. Natl. Acad. Sci. U.S.A. 90, 10573–10577. doi: 10.1073/pnas.90.22.10573
- Bayer, T. A., and Wirths, O. (2011). Intraneuronal Abeta as a trigger for neuron loss: can this be translated into human pathology? *Biochem. Soc. Trans.* 39, 857–861. doi: 10.1042/BST0390857
- Berridge, M. J. (2010). Calcium hypothesis of Alzheimer's disease. Pflugers Arch. 459, 441–449. doi: 10.1007/s00424-009-0736-1

Bezprozvanny, I., Bezprozvannaya, S., Ehrlich, B. E. (1994). Caffeine-induced inhibition of inositol(1,4,5)-trisphosphate-gated calcium channels from cerebellum. Mol. Biol. Cell 5, 97. doi: 10.1091/mbc.5.1.97

- Bezprozvanny, I., and Mattson, M. P. (2008). Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. *Trends Neurosci.* 31, 454–463. doi: 10.1016/j.tins.2008.06.005
- Blanchard, B. J., Chen, A., Rozeboom, L. M., Stafford, K. A., Weigele, P., and Ingram, V. M. (2004). Efficient reversal of Alzheimer's disease fibril formation and elimination of neurotoxicity by a small molecule. *Proc. Natl. Acad. Sci.* U.S.A. 101, 14326–14332.. doi: 10.1073/pnas.0405941101
- Bucciantini, M., Calloni, G., Chiti, F., Formigli, L., Nosi, D., Dobson, C. M., et al. (2004). Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J. Biol. Chem. 279, 31374–31382. doi: 10.1074/jbc.M400348200
- Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., et al. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. *Nature* 416, 507–511. doi: 10.1038/416507a
- Capone, R., Quiroz, F. G., Prangkio, P., Saluja, I., Sauer, A. M., Bautista, M. R., et al. (2009). Amyloid-beta-induced ion flux in artificial lipid bilayers and neuronal cells: resolving a controversy. *Neurotox. Res.* 16, 1–13. doi: 10.1007/s12640-009-0033.1
- Chromy, B. A., Nowak, R. J., Lambert, M. P., Viola, K. L., Chang, L., Velasco, P. T., et al. (2003). Self-assembly of Abeta1-42 into globular neurotoxins. *Biochemistry* 42, 12749–12760. doi: 10.1021/bi030029q
- Clark, T. A., Lee, H. P., Rolston, R. K., Zhu, X., Marlatt, M. W., Castellani, R. J., et al. (2010). Oxidative stress and its implications for future treatments and management of Alzheimer disease. *Int. J. Biomed. Sci.* 6, 225–227.
- Cleary, J. P., Walsh, D. M., Hofmeister, J. J., Shankar, G. M., Kuskowski, M. A., Selkoe, D. J., et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. *Nat. Neurosci.* 8, 79–84.. doi: 10.1038/nn1372
- Csordas, G., Renken, C., Varnai, P., Walter, L., Weaver, D., Buttle, K. F., et al. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921. doi: 10.1083/jcb.200604016
- Dahlgren, K. N., Manelli, A. M., Stine, W. B. Jr., Baker, L. K., Krafft, G. A., and Ladu, M. J. (2002). Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. *J. Biol. Chem.* 277, 32046–32053. doi: 10.1074/jbc.M201750200
- De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K. L., Fernandez, S. J., Ferreira, S. T., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an NMDA receptor-dependent mechanism that is blocked by the Alzheimer's drug memantine. *J. Biol. Chem.* 282, 11590–11601. doi: 10.1074/ibc.M607483200
- Demuro, A., Mina, E., Kayed, R., Milton, S. C., Parker, I., and Glabe, C. G. (2005).
 Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. *J. Biol. Chem.* 280, 17294–17300. doi: 10.1074/jbc.M500997200
- Demuro, A., and Parker, I. (2013). Cytotoxicity of intracellular aβ42 amyloid oligomers involves Ca²⁺ release from the endoplasmic reticulum by stimulated production of inositol trisphosphate. *J. Neurosci.* 33, 3824–3833. doi: 10.1523/JNEUROSCI.4367-12.2013
- Demuro, A., Parker, I., and Stutzmann, G. E. (2010). Calcium signaling and amyloid toxicity in Alzheimer disease. J. Biol. Chem. 285, 12463–12468. doi: 10.1074/jbc.R109.080895
- Demuro, A., Smith, M., and Parker, I. (2011). Single-channel Ca(2+) imaging implicates $A\beta$ 1-42 amyloid pores in Alzheimerandapos's disease pathology. J. Cell Biol. 195, 515–524. doi: 10.1083/jcb.201104133
- Dobson, C. M. (2003). Protein folding and misfolding. Nature 426, 884–890. doi: 10.1038/nature02261
- Ferreiro, E., Oliveira, C. R., and Pereira, C. (2004). Involvement of endoplasmic reticulum Ca²⁺ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide. *J. Neurosci. Res.* 76, 872–880. doi: 10.1002/jnr.20135
- Ferreiro, E., Oliveira, C. R., and Pereira, C. M. (2008). The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. *Neurobiol. Dis.* 30, 331–342. doi: 10.1016/j.nbd.2008.02.003
- Ferreiro, E., Resende, R., Costa, R., Oliveira, C. R., and Pereira, C. M. (2006). An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. *Neurobiol. Dis.* 23, 669–678. doi: 10.1016/j.nbd.2006.05.011

Mobilization of ER Ca^{2+} by $A\beta_{42}$

- Gong, Y., Chang, L., Viola, K. L., Lacor, P. N., Lambert, M. P., Finch, C. E., et al. (2003). Alzheimer's disease-affected brain: presence of oligomeric Abeta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. U.S.A. 100, 10417-10422. doi: 10.1073/pnas.
- Good, T. A., Smith, D. O., and Murphy, R. M. (1996). Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons. Biophys. J. 70, 296-304. doi: 10.1016/S0006-3495(96)79570-X
- Green, K. N., and Laferla, F. M. (2008). Linking calcium to Abeta and Alzheimer's disease. Neuron 59, 190-194. doi: 10.1016/j.neuron.2008.07.013
- Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). A new generation of Ca²⁺ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260,
- Guo, Q., Furukawa, K., Sopher, B. L., Pham, D. G., Xie, J., Robinson, N., et al. (1996). Alzheimer's PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 8, 379-383. doi: 10.1097/00001756-199612200-00074
- Hardy, J., and Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356. doi: 10.1126/science.1072994
- Higazi, D. R., Fearnley, C. J., Drawnel, F. M., Talasila, A., Corps, E. M., Ritter, O., et al. (2009). Endothelin-1-stimulated InsP3-induced Ca²⁺ release is a nexus for hypertrophic signaling in cardiac myocytes. Mol. Cell 33, 472-482. doi: 10.1016/j.molcel.2009.02.005
- Jarrett, J. T., and Lansbury, P. T. Jr. (1993). Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055-1058. doi: 10.1016/0092-8674(93)90635-4
- Kaminski Schierle, G. S., Van De Linde, S., Erdelyi, M., Esbjorner, E. K., Klein, T., Rees, E., et al. (2011). In situ measurements of the formation and morphology of intracellular beta-amyloid fibrils by super-resolution fluorescence imaging. J. Am. Chem. Soc. 133, 12902-12905. doi: 10.1021/ja201651w
- Kawahara, M. (2004). Disruption of calcium homeostasis in the pathogenesis of Alzheimer's disease and other conformational diseases. Curr. Alzheimer Res. 1, 87-95. doi: 10.2174/1567205043332234
- Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., et al. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486-489. doi: 10.1126/science.1079469
- Kaved, R., Sokolov, Y., Edmonds, B., McIntire, T. M., Milton, S. C., Hall, I. E., et al. (2004). Permeabilization of lipid bilayers is a common conformationdependent activity of soluble amyloid oligomers in protein misfolding diseases. I. Biol. Chem. 279, 46363-46366, doi: 10.1074/jbc.C400260200
- Kelly, B. L., and Ferreira, A. (2006). beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J. Biol. Chem. 281, 28079-28089. doi: 10.1074/jbc.M605081200
- Khachaturian, Z. S. (1989). Calcium, membranes, aging, and Alzheimer's disease. Introduction and overview. Ann. N.Y. Acad. Sci. 568, 1-4. doi: 10.1111/j.1749-6632.1989.tb12485.x
- Khachaturian, Z. S. (1994). Calcium hypothesis of Alzheimer's disease and brain aging. Ann. N.Y. Acad. Sci. 747, 1-11. doi: 10.1111/j.1749-6632.1994.tb44398.x
- Klyubin, I., Walsh, D. M., Lemere, C. A., Cullen, W. K., Shankar, G. M., Betts, V., et al. (2005). Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat. Med. 11, 556-561. doi: 10.1038/nm1234
- Klyubin, I., Wang, Q., Reed, M. N., Irving, E. A., Upton, N., Hofmeister, J., et al. (2009). Protection against Abeta-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiol. Aging 32, 614-623. doi: 10.1016/j.neurobiolaging.2009.04.005
- Klyubin, I., Wang, Q., Reed, M. N., Irving, E. A., Upton, N., Hofmeister, J., et al. (2011). Protection against Abeta-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiol. Aging 32, 614-623. doi: 10.1016/j.neurobiolaging.2009.04.005
- Kuperstein, I., Broersen, K., Benilova, I., Rozenski, J., Jonckheere, W., Debulpaep, M., et al. (2010). Neurotoxicity of Alzheimer's disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J. 29, 3408-3420. doi: 10.1038/emboj.2010.211
- Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. U.S.A. 95, 6448-6453. doi: 10.1073/pnas.95.11.6448

- Maezawa, I., Hong, H.-S., Liu, R., Wu, C.-Y. I., Cheng, R. H., Kung, M.-P., et al. (2008). Congo red and thioflavin-T analogs detect Abeta oligomers. J. Neurochem. 104, 457-468.
- Mason, R. P., Trumbore, M. W., and Pettegrew, J. W. (1996). Molecular membrane interactions of a phospholipid metabolite. Implications for Alzheimer's disease pathophysiology. Ann. N.Y. Acad. Sci. 777, 368-373. doi: 10.1111/j.1749-6632.1996.tb34447.x
- Mekahli, D., Bultynck, G., Parys, J. B., De Smedt, H., and Missiaen, L. (2011). Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb. Perspect. Biol. 3, 461-490. doi: 10.1101/cshperspect.a004317
- Mueller, W. E., Koch, S., Eckert, A., Hartmann, H., and Scheuer, K. (1995). beta-Amyloid peptide decreases membrane fluidity. Brain Res. 674, 133-136. doi: 10.1016/0006-8993(94)01463-R
- Parker, I., and Ivorra, I. (1991). Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J Physiol 433, 229-240.
- Parvathy, S., Davies, P., Haroutunian, V., Purohit, D. P., Davis, K. L., Mohs, R. C., et al. (2001). Correlation between Abetax-40-, Abetax-42-, and Abetax-43containing amyloid plaques and cognitive decline. Arch. Neurol. 58, 2025-2032. doi: 10.1001/archneur.58.12.2025
- Peppiatt, C. M., Collins, T. J., Mackenzie, L., Conway, S. J., Holmes, A. B., Bootman, M. D., et al. (2003). 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 34, 97-108. doi: 10.1016/S0143-4160(03)00026-5
- Peppiatt, C. M., Holmes, A. M., Seo, J. T., Bootman, M. D., Collins, T. J., McDonald, F., et al. (2004). Calmidazolium and arachidonate activate a calcium entry pathway that is distinct from store-operated calcium influx in HeLa cells. Biochem. J. 381, 929-939. doi: 10.1042/BJ20040097
- Pierrot, N., Ghisdal, P., Caumont, A. S., and Octave, J. N. (2004). Intraneuronal amyloid-beta1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. J. Neurochem. 88, 1140-1150. doi: 10.1046/j.1471-4159.2003.02227.x
- Resende, R., Ferreiro, E., Pereira, C., and Resende De Oliveira, C. (2008). Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience 155, 725-737. doi: 10.1016/j.neuroscience.2008.06.036
- Rowan, M. J., Klyubin, I., Wang, Q., Hu, N. W., and Anwyl, R. (2007). Synaptic memory mechanisms: Alzheimer's disease amyloid beta-peptide-induced dysfunction. Biochem. Soc. Trans. 35, 1219-1223. doi: 10.1042/BST0351219
- Simakova, O., and Arispe, N. J. (2006). Early and late cytotoxic effects of external application of the Alzheimer's Abeta result from the initial formation and function of Abeta ion channels. Biochemistry 45, 5907-5915. doi: 10.1021/bi060148g
- Sugawara, H., Kurosaki, M., Takata, M., and Kurosaki, T. (1997). Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 16, 3078-3088. doi: 10.1093/emboj/16.11.3078
- Taylor, C. W., and Broad, L. M. (1998). Pharmacological analysis of intracellular Ca²⁺ signalling: problems and pitfalls. Trends Pharmacol. Sci. 19, 370–375. doi: 10.1016/S0165-6147(98)01243-7
- Thathiah, A., and De Strooper, B. (2011). The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat. Rev. Neurosci. 12, 73-87. doi: 10.1038/nrn2977
- Toescu, E. C., O'neill, S. C., Petersen, O. H., and Eisner, D. A. (1992). Caffeine inhibits the agonist-evoked cytosolic Ca²⁺ signal in mouse pancreatic acinar cells by blocking inositol trisphosphate production. J. Biol. Chem. 267, 23467-23470.
- Tovey, S. C., De Smet, P., Lipp, P., Thomas, D., Young, K. W., Missiaen, L., et al. (2001). Calcium puffs are generic InsP(3)-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J. Cell. Sci. 114, 3979-3989.
- Tovey, S. C., Sun, Y., and Taylor, C. W. (2006). Rapid functional assays of intracellular Ca²⁺ channels. Nat. Protoc. 1, 259–263. doi: 10.1038/nprot.2006.40
- Umeda, T., Tomiyama, T., Sakama, N., Tanaka, S., Lambert, M. P., Klein, W. L., et al. (2011). Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J. Neurosci. Res. 89, 1031-1042. doi: 10.1002/jnr.22640
- Verkhratsky, A. (2005). Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 85, 201-279. doi: 10.1152/physrev.00004.2004

Jensen et al. Mobilization of ER Ca $^{2+}$ by A eta_{42}

Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539. doi: 10.1038/416535a

- Wang, Q., Walsh, D. M., Rowan, M. J., Selkoe, D. J., and Anwyl, R. (2004). Block of long-term potentiation by naturally secreted and synthetic amyloid betapeptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J. Neurosci. 24, 3370–3378. doi: 10.1523/JNEUROSCI.1633-03.2004
- Whalen, B. M., Selkoe, D. J., and Hartley, D. M. (2005). Small non-fibrillar assemblies of amyloid beta-protein bearing the Arctic mutation induce rapid neuritic degeneration. *Neurobiol. Dis.* 20, 254–266. doi: 10.1016/j.nbd.2005. 03.007
- Wirths, O., Multhaup, G., and Bayer, T. A. (2004). A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide–the first step of a fatal cascade. *J. Neurochem.* 91, 513–520. doi: 10.1111/j.1471-4159.2004.02737.x
- Xu, C., Bailly-Maitre, B., and Reed, J. C. (2005). Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664. doi: 10.1172/JCI26373
- Yao, J., Irwin, R. W., Zhao, L., Nilsen, J., Hamilton, R. T., and Brinton, R. D. (2009). Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. *Proc. Natl. Acad. Sci. U.S.A.* 106, 14670–14675. doi: 10.1073/pnas.0903563106

- Yoshiike, Y., Minai, R., Matsuo, Y., Chen, Y. R., Kimura, T., and Takashima, A. (2008). Amyloid oligomer conformation in a group of natively folded proteins. PLoS ONE 3:e3235. doi: 10.1371/journal.pone.0003235
- Zhang, Y. W., Thompson, R., Zhang, H., and Xu, H. (2011). APP processing in Alzheimer's disease. *Mol Brain* 4, 3. doi: 10.1186/1756-6606-4-3

Conflict of Interest Statement: Some of this work was supported by a grant from Senexis, Babraham Research Campus and Hozefa Amijee was employed by Senexis at the time this work was carried out.

Received: 17 August 2013; accepted: 14 October 2013; published online: 05 November 2013

Citation: Jensen LE, Bultynck G, Luyten T, Amijee H, Bootman MD and Roderick HL (2013) Alzheimer's disease-associated peptide $A\beta_{42}$ mobilizes ER Ca^{2+} via InsP₃R-dependent and -independent mechanisms. Front. Mol. Neurosci. **6**:36. doi: 10.3389/fnmol.2013.00036

This article was submitted to the journal Frontiers in Molecular Neuroscience.

Copyright © 2013 Jensen, Bultynck, Luyten, Amijee, Bootman and Roderick. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.