368 research outputs found

    Synthesis, characterization, and computational analysis of the dialanate dianion, [H3Al-AlH3]2− : a valence isoelectronic analogue of ethane

    Get PDF
    C.J. and A.S. gratefully acknowledge financial support from the Australian Research Council, while C.J. thanks the U.S. Air Force Asian Office of Aerospace Research and Development (FA2386-14-1-4043) for funding. G.F. acknowledges financial support from the Deutsche Forschungsgemeinschaft.The first example of a well-defined binary, low-oxidation-state aluminum hydride species that is stable at ambient temperature, namely the dianion in [{(DepNacnac)Mg}2(ÎŒ-H)]2[H3Al-AlH3] (DepNacnac=[(DepNCMe)2CH]−, Dep=2,6-diethylphenyl), has been prepared via a magnesium(I) reduction of the alanate complex, (DepNacnac)Mg(ÎŒ-H)3AlH(NEt3). An X-ray crystallographic analysis has shown the compound to be a contact ion complex, which computational studies have revealed to be the source of the stability of the aluminum(II) dianion.PostprintPeer reviewe

    Normal and abnormal NHC coordination in cationic hydride iodide complexes of aluminium

    Get PDF
    We thank the University of St Andrews and the EPSRC UK National Mass Spectrometry Facility (NMSF) at Swansea University.The mixed N-heterocyclic carbene (NHC) complexes NHCAlHxI3-x, where NHC is IDip or IMes ((HCNAr)2C:, Ar = 2,6-iPr2C6H3 = Dip (IDip); or 2,4,6-Me3C6H2 = Mes (IMes)), x = 1 or 2, were either prepared from NHCAlH3 and NHCAlI3 or by halogenation of NHCAlH3 with MeI. Reaction of [(IDip)AlHxI3-x], with x = 0-3, with another equivalent of a IDip afforded either fluxional equilibria in benzene solution for x = 0, no reaction for x = 3, or the new mixed normal-abnormal NHC-coordinated ionic complexes [(IDip)AlH2(aIDip)]I ( 9 ) and [(IDip)AlHI(aIDip)]I ( 10 ), where aIDip is the abnormal IDip carbene tautomer bonded through its 4-position. The molecular structures of 9 and 10 were determined and show slightly shorter Al–C(aIDip) than Al–C(IDip) distances. In addition, a complex containing [(IDip)AlI2(aIDip)]I ( 11 ) was structurally characterized though could not intentionally be synthesised. Possible formation mechanisms for 9 - 11 are discussed and the normal and abnormal IDip coordination to the aluminium(III) centre is believed to occur for steric reasons.PostprintPeer reviewe

    Anion stabilised hypercloso-hexaalane Al6H6

    Get PDF
    The authors gratefully acknowledge financial support from the Australian Research Council (C.J. and A.S.), the U.S. Air Force Asian Office of Aerospace Research and Development (grant FA2386-18-1-0125 to C.J.), Deutsche Forschungsgemeinschaft (FR 641/25-2) (G.F.), and Director, Bragg Institute, ANSTO, 2011 approval of DB 1959 (A.J.E. and C.J.).Boron hydride clusters are an extremely diverse compound class, which are of enormous importance to many areas of chemistry. Despite this, stable aluminium hydride analogues of these species have remained staunchly elusive to synthetic chemists. Here we report that reductions of an amidinato-aluminium(III) hydride complex with magnesium(I) dimers lead to unprecedented examples of stable aluminium(I) hydride complexes, [(ArNacnac)Mg]2[Al6H6(Fiso)2] (ArNacnac = [HC(MeCNAr)2]-, Ar = C6H2Me3-2,4,6 Mes; C6H3Et2-2,6 Dep or C6H3Me2-2,6 Xyl; Fiso = [HC(NDip)2]-, Dip = C6H3Pri2-2,6), which crystallographic and computational studies show to possess near neutral, octahedral hypercloso-hexaalane, Al6H6, cluster cores. The electronically delocalised skeletal bonding in these species is compared to that in the classical borane, [B6H6]2-. Thus, the chemistry of classical polyhedral boranes is extended to stable aluminium hydride clusters for the first time.Publisher PDFPeer reviewe

    Tuning coordination in s-block carbazol-9-yl complexes

    Get PDF
    1,3,6,8-Tetra-tert-butylcarbazol-9-yl and 1,8-diaryl-3,6-di(tert-butyl)carbazol-9-yl ligands have been utilized in the synthesis of potassium and magnesium complexes. The potassium complexes (1,3,6,8-tBu4carb)K(THF)4 (1; carb=C12H4N), [(1,8-Xyl2-3,6-tBu2carb)K(THF)]2 (2; Xyl=3,5-Me2C6H3) and (1,8-Mes2-3,6-tBu2carb)K(THF)2 (3; Mes=2,4,6-Me3C6H2) were reacted with MgI2 to give the Hauser bases 1,3,6,8-tBu4carbMgI(THF)2 (4) and 1,8-Ar2-3,6-tBu2carbMgI(THF) (Ar=Xyl 5, Ar=Mes 6). Structural investigations of the potassium and magnesium derivatives highlight significant differences in the coordination motifs, which depend on the nature of the 1- and 8-substituents: 1,8-di(tert-butyl)-substituted ligands gave π-type compounds (1 and 4), in which the carbazolyl ligand acts as a multi-hapto donor, with the metal cations positioned below the coordination plane in a half-sandwich conformation, whereas the use of 1,8-diaryl substituted ligands gave σ-type complexes (2 and 6). Space-filling diagrams and percent buried volume calculations indicated that aryl-substituted carbazolyl ligands offer a steric cleft better suited to stabilization of low-coordinate magnesium complexes

    Heteroleptic actinocenes: a thorium(iv)-cyclobutadienyl-cyclooctatetraenyl-di-potassium-cyclooctatetraenyl complex.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2020-06-01, epub 2020-06-10Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; Grant(s): EP/M027015/1, EP/P001386/1Despite the vast array of η n -carbocyclic C5-8 complexes reported for actinides, cyclobutadienyl (C4) remain exceedingly rare, being restricted to six uranium examples. Here, overcoming the inherent challenges of installing highly reducing C4-ligands onto actinides when using polar starting materials such as halides, we report that reaction of [Th(η8-C8H8)2] with [K2{C4(SiMe3)4}] gives [{Th(η4-C4[SiMe3]4)(ÎŒ-η8-C8H8)(ÎŒ-η2-C8H8)(K[C6H5Me]2)}2{K(C6H5Me)}{K}] (1), a new type of heteroleptic actinocene. Quantum chemical calculations suggest that the thorium ion engages in π- and ÎŽ-bonding to the η4-cyclobutadienyl and η8-cyclooctatetraenyl ligands, respectively. Furthermore, the coordination sphere of this bent thorocene analogue is supplemented by an η2-cyclooctatetraenyl interaction, which calculations suggest is composed of σ- and π-symmetry donations from in-plane in- and out-of-phase C[double bond, length as m-dash]C 2p-orbital combinations to vacant thorium 6d orbitals. The characterisation data are consistent with this being a metal-alkene-type interaction that is integral to the bent structure and stability of this complex

    Dialumenes – aryl vs. silyl stabilisation for small molecule activation and catalysis

    Get PDF
    Main group multiple bonds have proven their ability to act as transition metal mimics in the last few decades. However, catalytic application of these species is still in its infancy. Herein we report the second neutral NHC-stabilised dialumene species by use of a supporting aryl ligand (3). Different to the trans-planar silyl-substituted dialumene (3Si), compound 3 features a trans-bent and twisted geometry. The differences between the two dialumenes are explored computationally (using B3LYP-D3/6-311G(d)) as well as experimentally. A high influence of the ligand's steric demand on the structural motif is revealed, giving rise to enhanced reactivity of 3 enabled by a higher flexibility in addition to different polarisation of the aluminium centres. As such, facile activation of dihydrogen is now achievable. The influence of ligand choice is further implicated in two different catalytic reactions; not only is the aryl-stabilised dialumene more catalytically active but the resulting product distributions also differ, thus indicating the likelihood of alternate mechanisms simply through a change of supporting ligand

    1,8-Bis(silylamido)naphthalene complexes of magnesium and zinc synthesized through alkane elimination reactions

    Get PDF
    The reactions between magnesium or zinc alkyls and 1,8-bis(triorganosilyl)diaminonaphthalenes afford the 1,8-bis(triorganosilyl)diamidonaphthalene complexes with elimination of alkanes. The reaction between 1,8-C10H6(NSiMePh2H)2 and one or two equivalents of MgnBu2 affords two complexes with differing coordination environments for the magnesium; the reaction between 1,8-C10H6(NSiMePh2H)2 and MgnBu2 in a 1:1 ratio affords 1,8-C10H6(NSiMePh2)2{Mg(THF)2} (1), which features a single magnesium centre bridging both ligand nitrogen donors, whilst treatment of 1,8-C10H6(NSiR3H)2 (R3 = MePh2, iPr3) with two equivalents of MgnBu2 affords the bimetallic complexes 1,8-C10H6(NSiR3)2{nBuMg(THF)}2 (R3 = MePh2 2, R3 = iPr3 3), which feature four-membered Mg2N2 rings. Similarly, 1,8-C10H6(NSiiPr3)2{MeMg(THF)}2 (4) and 1,8-C10H6(NSiMePh2)2{ZnMe}2 (5) are formed through reactions with the proligands and two equivalents of MMe2 (M = Mg, Zn). The reaction between 1,8-C10H6(NSiMePh2H)2 and two equivalents of MeMgX affords the bimetallic complexes 1,8-C10H6(NSiMePh2)2(XMgOEt2)2 (X = Br 6; X = I 7). Very small amounts of [1,8-C10H6(NSiMePh2)2{IMg(OEt2)}]2 (8), formed through the coupling of two diamidonaphthalene ligands at the 4-position with concomitant dearomatisation of one of the naphthyl arene rings, were also isolated from a solution of 7
    • 

    corecore