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Anion stabilised hypercloso-hexaalane Al6H6
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Boron hydride clusters are an extremely diverse compound class, which are of enormous

importance to many areas of chemistry. Despite this, stable aluminium hydride analogues of

these species have remained staunchly elusive to synthetic chemists. Here, we report that

reductions of an amidinato-aluminium(III) hydride complex with magnesium(I) dimers lead

to unprecedented examples of stable aluminium(I) hydride complexes, [(ArNacnac)

Mg]2[Al6H6(Fiso)2] (ArNacnac= [HC(MeCNAr)2]−, Ar= C6H2Me3-2,4,6 Mes; C6H3Et2-2,6

Dep or C6H3Me2-2,6 Xyl; Fiso= [HC(NDip)2]−, Dip= C6H3Pri2-2,6), which crystallographic

and computational studies show to possess near neutral, octahedral hypercloso-hexaalane,

Al6H6, cluster cores. The electronically delocalised skeletal bonding in these species is

compared to that in the classical borane, [B6H6]2−. Thus, the chemistry of classical

polyhedral boranes is extended to stable aluminium hydride clusters for the first time.
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The binary hydrides of boron, i.e. boranes (typically
[BxHy]z−, x ≤ y, z= 0–2), are of enormous importance to
chemistry from both fundamental and applications

standpoints. The vast majority of these species are low oxidation
state boron cluster compounds, which exhibit an enormous
array of structural types1. The understanding of the structures of
such clusters required the early development of revolutionary
theories on chemical bonding (e.g. Wade–Mingos rules for elec-
tron counting)2,3, which ultimately led to boranes finding appli-
cations in areas as diverse as synthesis4, rocket fuel technology5

and medical science6.
It is remarkable that aluminium, boron’s neighbour in group

13, does not form any isolable hydride cluster compounds, or
indeed many binary hydride compounds at all, e.g. AlH3, H2Al
(μ-H)2AlH2 and [AlH4]− 7. With that said, a handful of transient,
low oxidation state alane cluster compounds have been studied in
the gas phase, and some, e.g. Al4H6, have been shown to have
fleeting stability8–11. Given that numerous ligand substituted,
metalloid aluminium cluster compounds, e.g. [Al77{N(SiMe3)}20]2
−, have been reported to be stable at, or close to, room
temperature12,13, it seemed that related low-valent aluminium
hydride clusters might be ultimately accessible under the right
preparative conditions. As a prelude to realising this goal, we have
synthesised the first stable binary low oxidation state aluminium
hydride fragments, viz. [Al2H6]2− and Lewis base stabilised
Al2H4, by reduction of aluminium(III) hydride precursors with
magnesium(I) dimers14,15.

Here, we report that related reductions of an amidinato-
aluminium(III) hydride complex lead to unprecedented examples
of stable aluminium(I) hydride complexes, [(ArNacnac)
Mg]2[Al6H6(Fiso)2] (ArNacnac= [HC(MeCNAr)2]−, Ar=
C6H2Me3-2,4,6 Mes; C6H3Et2-2,6 Dep or C6H3Me2-2,6 Xyl;
Fiso= [HC(NDip)2]−, Dip=C6H3Pri2-2,6), which possess near
neutral hypercloso-hexaalane, Al6H6, cluster cores. Thus, this
work represents a unique extension of the chemistry of classical
polyhedral boranes to that of their alane analogues.

Results
Synthetic and spectroscopic studies. Treatment of benzene,
toluene, cyclohexane or hexane solutions of the formamidinato-
aluminium(III) hydride complex, [{(μ-N,N-Fiso)Al(H)(μ-H)}2]16,
with 1.2–2.0 equivalents of β-diketiminato ligated magnesium(I)
dimers, [{(ArNacnac)Mg}2] (Ar=Mes, Dep or Xyl)17–19

(see Supplementary Materials and Supplementary Figs. 1–5), at
elevated temperatures (typically 60–80 °C) reproducibly afforded
low yields (ca. 5–20%) of the deep red crystalline aluminium(I)
hydride cluster compounds 1 (Fig. 1), upon cooling the reaction
solutions to ambient temperature. On several occasions, a num-
ber of low yielding colourless crystalline by-products were iso-
lated from the reaction mixtures, including [(Fiso)Mg

(DepNacnac)], [(Fiso)2AlH]16, [{(MesNacnac)Mg(μ-H)}2]15 and
the dialanate salt, [{(MesNacnac)Mg}2(μ-H)]2[H3Al–AlH3]14

(see Supplementary Methods and Supplementary Figs. 6–9).
The nature of these by-products suggests that the reductive
mechanism for the formation of 1 could involve several inter-
mediates and/or could compete with side reactions. In order to
assess these possibilities, reactions that gave 1 at 70 °C were fol-
lowed by 1H NMR spectroscopy. This revealed complex
mixtures of products after several minutes heating, of which
[(Fiso)Mg(Nacnac)] was identified in significant quantities
(Supplementary Fig. 10). Definitive identification of products,
other than those which were later isolated as crystalline solids,
was not possible, and the mechanism of formation of 1 is not
certain at this time.

To the best of our knowledge compounds 1 represent the first
examples of isolated aluminium(I) hydride complexes, though
mononuclear examples have recently been tentatively proposed as
unstable intermediates in solution-based reactions20. The cluster
compounds have negligible solubility in common deuterated
solvents once crystallised, so no meaningful solution state
spectroscopic data could be acquired for them. The most relevant
solid state spectroscopic data (Supplementary Figs. 11, 12) for the
compounds come from their infrared spectra, which exhibit
single bands in the characteristic region for terminal Al–H
stretching modes7 (e.g. 1a: ν= 1798 cm−1). In addition, stronger
bands are seen at lower wavenumber (e.g. 1a: ν= 1648 cm−1)
that possibly arise from a weakly bridging Al–H···Mg stretching
mode, though these bands overlap with ligand stretching
absorptions (see below). Noteworthy is the fact that the band at
ν= 1798 cm−1 observed for 1a is completely absent in the
infrared spectrum of its hexa-deuteride analogue, 1a-D, which
was prepared by magnesium(I) reduction of [{(μ-N,N-Fiso)Al(D)
(μ-D)}2]. The Al-D stretching band for 1a-D should occur at ca.
1270 cm−1, but this is likely masked by strong ligand stretching
modes in that region (Supplementary Fig. 12).

Crystallographic studies. All complexes 1 were crystal-
lographically characterised and found to be isostructural, so only
the molecular structure of 1a is depicted in Fig. 2 (see Supple-
mentary Methods, Supplementary Table 1 and Supplementary
Figures 13 and 14). The hydride ligands of each cluster were
located from difference maps and freely refined. A neutron dif-
fraction study was also carried out on compound 1a, which
unambiguously confirmed the presence and connectivity of the
six hydride ligands, and the absence of any other terminal,
bridging or interstitial hydrides within the cluster core (see Sup-
plementary Methods and Supplementary Figs. 15, 16). The
compounds can be considered as having near neutral, distorted
octahedral Al6H6 cores, opposing equatorial sides of which are
coordinated by bridging, electronically delocalised formamidinate
ligands. The remaining equatorial sides of the octahedron are
bridged by [(MesNacnac)Mg]+ cations, which have weak inter-
actions with the two hydride ligands that project from each side.
Terminal hydride ligands coordinate to the apical aluminium
centres of the cluster core, though these are slightly offset from
the vector passing through the two aluminium centres to which
they are coordinated, presumably for steric reasons. All of the
Al–Al distances within the Al6 core lie in the known range for
such bonds (mean: 2.72(12) Å, search of the Cambridge Crys-
tallographic Database, February 2018), though the equatorial
Al–Al distances (2.701(2) Å and 2.826(2) Å) are significantly
longer than those between all axial and equatorial aluminium
centres (2.631(2)–2.691(2) Å). The shorter of the equatorial Al–Al
interactions are, not surprisingly, those which are bridged by the
formamidinate ligands.
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Fig. 1 Formation of compounds 1 (Mes= C6H2Me3-2,4,6; Dep=C6H3Et2-
2,6; Xyl= C6H3Me2-2,6). The compounds 1 are prepared by reduction of
[{(μ-N,N-Fiso)Al(H)(μ-H)}2] with magnesium(I) dimers
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Electronic structure and computational studies. The neutral
distorted, octahedral Al6H6 cluster cores of 1 somewhat resemble
the structure of the classical polyhedral borane, closo-[B6H6]2− 1,
despite their aforementioned elongated equatorial Al–Al inter-
actions. This is intriguing as Al6H6 can be viewed as having 12
(i.e. 2n) valence electrons (i.e. 2 from each Al vertex) contributing
to the skeletal Al–Al bonding of the cluster core. As such, it would
be expected to have a more unsymmetrical, capped structure than
the 14 skeletal valence electron (2n+ 2) closo-[B6H6]2−, accord-
ing to Wade–Mingos rules2,3. Indeed, computational studies have
predicted a number of more open and unsymmetrical structures
for Al6H6

21,22, which are close in energy. Of course, in 1 the
distorted octahedral geometry of this fragment is likely enforced
by coordination to the amidinate ligands, which computational
studies suggest do not add to the skeletal electron count (see
below). For sake of comparison, isoelectronic B6H6 and Ga6H6,
which have not been isolated experimentally, have been predicted
to have capped trigonal bipyramidal hypercloso-structures, with
all hydrides terminal23,24. Also worthy of mention are several
ligand substituted analogues of Al6H6, e.g. B6(NMe2)625 and
Ga6{SiMe(SiMe3)2}624, which possess distorted octahedral struc-
tures with several elongated E–E bonds, not dissimilar to the
situation in 1. In the case of Ga6{SiMe(SiMe3)2}6, calculations on
the model compound Ga6H6 suggest that this can be attributed to
a Jahn–Teller distortion arising from loss of degeneracy of the t2g
HOMOs of closo-[Ga6H6]2− upon removal of two electrons from
that dianion24.

In order to shed light on the nature of the bonding in the Al6H6

core of 1, DFT calculations (theory level: RI-BP86/def2-TZVPP)
were carried out on a cut-down model of the cluster compounds,
viz. [(MeNacnac)Mg]2[Al6H6(HFiso)2] 1′ (MeNacnac= [HC
(MeCNMe)2]−, HFiso= [HC(NH)2]−) (Supplementary Meth-
ods). The geometry of the complex (Supplementary Fig. 7 and
Supplementary Table 2) optimised to be similar to those of 1,
including a distorted octahedral Al6H6 core with somewhat
shorter Alax–Aleq bonds (2.650–2.668 Å) than Aleq–Aleq distances

(2.718–2.819 Å). Reassuringly, the calculated infrared spectrum of
1′ (Supplementary Table 3) exhibits terminal and bridging Al–H
stretching bands (ν= 1797 cm−1 (m) and 1649 cm−1 (s)
respectively) that are very close to the experimental values for
1a, thus supporting the use of 1′ as a model for 1. The charges on
the whole Al6H6 fragment (−0.67), both HFiso ligands (−1.10)
and both (MeNacnac)Mg fragments (+1.76) (Supplementary
Table 4), indicate that 1′ is best viewed as an anion coordinated,
near neutral hypercloso-Al6H6 cluster, having weak hydride
bridges to [(MeNacnac)Mg]+ cationic units. The calculated
Wiberg bond indices (WBI) for the Alax–Aleq bonds (0.63–0.66)
(Supplementary Table 5) are suggestive of relatively strong
bonding interactions, while the WBIs for the Aleq-Aleq interac-
tions are much smaller (0.23–0.31). In line with this result is the
fact that no bond critical points were found between the
equatorial aluminium centres (Supplementary Fig. 8). Calcula-
tions on the [Al6H6(HFiso)2]2− dianion, in the absence of the
[(MeNacnac)Mg]+ cations, showed this fragment to be stable,
with a geometry similar to that in the full contact ion compound
(Supplementary Fig. 17 and Supplementary Table 2). This,
combined with the fact that the uncoordinated Al6H6 octahedral
unit was calculated to be an unstable entity in the electronic
singlet state, confirms that the hypercloso-Al6H6 moiety of 1′ is
stabilised by coordination to the HFiso anions.

The electronic structure of the [Al6H6(HFiso)2]2− dianion was
calculated and found to be similar to that of the full contact ion
compound (Supplementary Figs. 19–21), so only the former is
displayed in Fig. 3. There are seven Al-based molecular orbitals
(MOs) on the dianion, six of which are filled, in line with the view
that the cluster is a 12 skeletal valence electron species. None of
these MOs are degenerate, but they do closely resemble the seven
filled cluster based MOs for closo-[B6H6]2− (triply degenerate t2g
and t1u orbital sets, and a1g orbital)2, and thus display significant
electronic delocalisation over the Al6 core. The lack of degeneracy
of the Al-based MOs of [Al6H6(HFiso)2]2− arises from the lower
symmetry, and lower skeletal electron count, of the dianion
relative to those of closo-[B6H6]2−. Interestingly, the LUMO+7
(lower energy empty MOs are ligand based) of [Al6H6(HFiso)2]2−

resembles the degenerate t2g HOMO of closo-[B6H6]2− which
exhibits the most analogous, quasi-equatorial B–B bonding
character. This goes a long way to explaining the weak Aleq–Aleq
interactions in 1′. The HOMO and HOMO-1 of [Al6H6(HFiso)2]
2− are reminiscent of the other two t2g orbitals of closo-[B6H6]2−,
while the HOMO-2, HOMO-3 and HOMO-4 show similarities
with the t1u orbitals of the borane. At lower energy is the HOMO-
9 which corresponds to the a1g orbital of closo-[B6H6]2−. No Al-
based MO exhibits significant contributions from the HFiso
anions, the lone pairs of which are polarised towards their N-
centres, and should therefore not be included in the counting of
electrons contributing to Al–Al bonding within the cluster core.
This view is supported by results of an energy decomposition
analysis of the intrinsic interactions between the Al6H6 core and
the amidinate ligands in [Al6H6(HFiso)2]2− (Supplementary
Fig. 22 and Supplementary Table 6). Calculations of the NICS
values of 1′ at the centre of the Al6H6 core suggest that the cluster
exhibits significant 3-dimensional aromaticity (NICSiso=−12.49
ppm, NICSzz=−45.74 ppm) (Supplementary Table 7), as is
common for polyhedral boranes1.

Methods
General. Experiments were carried out under a dry, oxygen-free dinitrogen
atmosphere using Schlenk-line and glove-box techniques. All solvents and reagents
were rigorously dried and deoxygenated before use. Compounds were variously
characterised by elemental analyses, NMR, FTIR, and Raman spectroscopies, single
crystal X-ray diffraction studies, and DFT calculations. Further details are available
in Supplementary Methods.
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Fig. 2Molecular structure of 1a. Hydrogen atoms, except hydrides, omitted.
Ellipsoids shown at the 20% probability level, except aryl substituents,
which are shown as wire frame. Selected bond lengths (Å): Al(1)–Al(2)
2.6317(15), Al(1)–Al(3) 2.6340(17), Al(1)–Al(2)′ 2.6472(15), Al(1)–Al(3)′
2.6907(18), Al(2)–Al(3) 2.701(2), Al(2)–Al(3)′ 2.8257(14), Al(3)–N(2)
1.950(3), Al(2)–N(1) 1.925(3), Al(1)–H(1) 1.52(3), Al(2)–H(2) 1.55(3), Al
(3)–H(3) 1.57(3), Mg(1)–H(2) 1.96(3), Mg(1)–H(3)′ 1.98(3). Symmetry
operation: −x+ 2, −y+ 1, −z
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Preparation of [(XylNacnac)MgI(OEt2)]. A freshly prepared solution of MeMgI
(28.4 mmol) in diethyl ether (80 mL) was added over 20 min to a stirred solution of
XylNacnacH26 (8.08 g, 26.4 mmol) in diethyl ether (100 mL) at −20°C, yielding a
colourless precipitate. The suspension was warmed to room temperature and
stirred for 1 h after which time the precipitate of the title compound was collected
by filtration. The supernatant solution was concentrated to ca. 40 mL and cooled to
−30 °C to afford a second crop (12.86 g, 90%). M.P. 195–197 °C (decomp.); 1H
NMR (400MHz, 298 K, C6D6) δ= 0.44 (br, 6H; OCH2CH3), 1.54 (s, 6H; NCCH3),
2.07 (br, 6H; ortho-CH3), 2.64 (br, 6H; ortho-CH3), 3.11 (br, 4H; OCH2CH3), 4.86
(s, 1H; CH), 6.75–7.15 (m, 6H; Ar-H); 13C{1H} NMR (100MHz, 298 K, C6D6)
δ= 13.0 (NCCH3), 18.7 (ortho-CH3), 21.1 (ortho-CH3), 23.4 (OCH2CH3), 65.9
(OCH2CH3), 95.3 (CH), 124.7, 129.6, 131.5, 147.7 (Ar-C), 168.8 (NCCH3); MS
(EI 70 eV), m/z (%): 457.1 (MH+-OEt2, 5), 306.4 (XylNacnacH+, 100); IR (Nujol) ν
(cm−1): 1518s, 1262m, 1215w, 1197m,1185m, 1148m, 1092m, 1021m, 996m,
857m, 848w, 775s, 758m, 636m. Note: A satisfactory reproducible microanalysis of
the compound could not be obtained due to co-crystallisation of the product with
small amounts (ca. 3%) of the β-diketimine, XylNacnacH, which could not be
removed after several recrystallisations.

Preparation of [{(XylNacnac)Mg}2]. Toluene (80 mL) and diethyl ether (ca.
2 mL) were added to [(XylNacnac)MgI(OEt2)] (1.58 g, 2.40 mmol). The resultant
solution was rapidly stirred over a sodium mirror (0.70 g, 30.4 mmol) for 5 days to
yield a yellow/green suspension. This was filtered, the yellow filtrate concentrated
to ca. 20 mL and placed at −30 °C overnight to give yellow crystals of the title
compound. A second crop was isolated after further concentration and cooling
of the supernatant solution (0.28 g, 29%). M.P. 180–181 °C (decomp.); 1H NMR
(400MHz, 298 K, C6D6) δ= 1.48 (s, 12H; NCCH3), 1.90 (br. s, 24H; ortho-CH3),
4.76 (s, 2H; CH), 6.85–7.10 (m, 12H; Ar-H); 13C{1H} NMR (100MHz, 298 K,
C6D6) δ= 19.2 (NCCH3), 23.1 (ortho-CH3), 95.3 (CH), 124.1, 128.4, 131.8, 148.0
(Ar-C), 166.3 (NCCH3); MS (EI 70 eV), m/z (%): 659.5 (MH+, 10); IR (Nujol) ν

(cm−1): 1555s, 1520w, 1278m, 1262m, 1182m, 1094m, 1023m, 809w, 762m. Note:
A satisfactory reproducible microanalysis of the compound could not be obtained
due to co-crystallisation of the product with small amounts (ca. 5%) of the iodide
bridged magnesium(II) dimer, [{(XylNacnac)Mg(μ-I)}2], which could not be
removed after several recrystallisations. The constitution of this co-crystallised
mixture was confirmed by a poor quality crystal structure determination of
[{(XylNacnac)Mg}2], details of which are not reported here due to the low quality of
the diffraction data.

Preparation of [(MesNacnac)Mg]2[Al6H6(Fiso)2] (1a). [{(μ-N,N-Fiso)Al(H)
(μ-H)}2]16 (164 mg, 0.21 mmol) was added to a suspension of [{(MesNacnac)
Mg}2]27 (300 mg, 0.42 mmol) in benzene (5 mL) in a grease-free Schlenk flask
(20 mm diameter). The mixture was heated to 65 °C for 5 min or until a bright red
solution formed. Allowing the solution to stand at room temperature for 4 days
resulted in the deposition of red crystals of 1a (20 mg, 18% based on aluminium).
M.P. > 150 °C (decomp.) 13C{1H} NMR (75.5 MHz, 298 K, solid state) δ= 17.5,
20.6, 25.4, 27.7, 95.1, 123.8, 129.4, 131.5, 142.1, 146.4, 163.4, 167.4; MS (EI 70 eV),
m/z (%): 335.5 (MesNacnacH2

+, 100), 365.5 (FisoH2
+, 38); MALDI-TOF MS m/z:

335.5 (MesNacnacH2
+), 357.4 ((MesNacnac)Mg+), 365.5 (FisoH2

+), 389.4 ((Fiso)
Al–H+); IR (Nujol) ν (cm−1): 1798m (Al–H str.), 1648s (br, incl. Al–H str.),
1542vs, 1197m, 1176m, 1146s, 1097s, 1021s, 854s, 803s, 755s; Raman (solid under
N2, 514 nm excitation, cm−1): ν= 3064m, 1352s, 1318m, 522m, 386m. A similar
yield of 1a was obtained when the reaction was conducted in cyclohexane (ca.
12 mL). Elemental analysis calculated for C96H134Al6Mg2N8·C6H12: C 72.29%, H
8.68%, N 6.61%; found: C 72.13%, H 8.55%, N 6.54%. Notes: (i) A few crystals of
the known magnesium(II) hydride dimer, [{(MesNacnac)Mg(μ-H)}2]15, the known
aluminium(III) hydride, [(Fiso)2AlH]16, and the new colourless dialanate salt,
[{(MesNacnac)Mg}2(μ-H)]2[H3Al–AlH3], co-crystallised with 1a from the reaction
mixture. All were identified by X-ray crystallography (Supplementary Fig. 9).
Insufficient amounts of [{(MesNacnac)Mg}2(μ-H)]2[H3Al–AlH3] were obtained to

a b c

d e

g

f

Fig. 3 Representations of the aluminium-based MOs of [Al6H6(HFiso)2]2−. a LUMO+7 (5.64 eV), b HOMO (3.42 eV), c HOMO-1 (3.30 eV), d HOMO-2
(1.96 eV), e HOMO-3 (1.84 eV), f HOMO-4 (1.70 eV), g HOMO-9 (−0.01 eV)
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allow spectroscopic characterisation, but it is noteworthy that the 2,6-diethylphenyl
substituted analogue of the compound, [{(DepNacnac)Mg}2(μ-H)]2[H3Al–AlH3],
has been previously reported and fully characterised14. (ii) Reproducible low yield
syntheses of 1a (typically 5–20%) were achieved under a number of reaction
conditions. For example, toluene, hexane, cyclohexane or benzene could be used as
the reaction solvent, the reaction temperature was varied from ca. 60–80 °C, the
reaction stoichiometry was varied from 1.2:1 to 2:1 ([{(MesNacnac)Mg}2]:[{(μ-N,N-
Fiso)Al(H)(μ-H)}2]), and the time the reaction mixture was kept at elevated
temperature varied from 5 to 25 min. The time required for the reaction depended
strongly on the diameter of the reaction flask. (iii) Compound 1a (and 1b-c) have
negligible solubility in common deuterated solvents once crystallised, so no
meaningful solution state spectroscopic data could be acquired for them. Attempts
to dissolve 1a in d8-THF led to decomposition of the compound. (iv) Attempts
were made to obtain solution state spectroscopic data on 1a from red reaction
solutions before it crystallised from those solutions. NMR spectroscopic data on
those solutions showed complex product mixtures (Supplementary Fig. 10), while
ESI mass spectroscopic analyses of the reaction solutions showed no ion that could
be assigned to 1a or its fragmentation products.

Preparation of [(DepNacnac)Mg]2[Al6H6(Fiso)2] (1b). [{(μ-N,N-Fiso)Al(H)(μ-
H)}2]16 (102 mg, 0.13 mmol) was added to a suspension of [{(DepNacnac)Mg}2]19

(200 mg, 0.26 mmol) in benzene (2 mL) in a grease-free Schlenk flask (20 mm
diameter). The mixture was heated to 65 °C for 5 min or until a bright red solution
formed. Allowing the solution to stand at room temperature for 4 days resulted in
the deposition of deep red crystals of 1b (10 mg, 5% based on aluminium). M.P. >
150 °C (decomp.); IR (Nujol) ν (cm−1): 1834m (Al–H str.), 1633s (br, incl. Al–H
str.), 1538s, 1366vs, 1338s, 1320s, 1261s, 1232m, 1177s, 1108s, 1023s, 946m, 802s.
No solution state spectroscopic data could be obtained for the compound due to its
negligible solubility in common organic solvents. A reproducible microanalysis of
the compound could not be obtained due it its low yield and the fact that it co-
crystallised with the known dialanate salt, [{(DepNacnac)Mg}2(μ-H)]2[H3Al–AlH3]
14, and the new, colourless magnesium(II) complex, [(Fiso)Mg(DepNacnac)].
The latter compound was subsequently intentionally synthesised, spectroscopically
characterised, and its X-ray crystal structure obtained (Supplementary Figure 8).

Preparation of [(XylNacnac)Mg]2[Al6H6(Fiso)2] (1c). [{(μ-N,N-Fiso)Al(H)
(μ-H)}2]16 (118 mg, 0.15 mmol) was added to a suspension of [{(XylNacnac)Mg}2]
(200 mg, 0.30 mmol) in benzene (3 mL) in a grease-free Schlenk flask (20 mm
diameter). The mixture was heated to 65 °C for 5 min or until a bright
red solution formed. Allowing the solution to stand at room temperature for 4 days
resulted in the deposition of deep red crystals of 1c (10 mg, 4% based on
aluminium). M.P. > 150 °C (decomp.); IR (Nujol) ν (cm−1): 1829m (Al–H), 1623m
(br incl. Al–H str.), 1593m, 1543vs, 1336s, 1322s, 1265m, 1257m, 1233m,
1185s, 1096m, 1031m, 951m, 934m, 843m, 802m, 762s, 698m. No solution
state spectroscopic data could be obtained for the compound due to its negligible
solubility in common organic solvents. A reproducible microanalysis of the
compound could not be obtained due it its low yield and the fact that it
co-crystallised with colourless crystalline compounds from which it could not be
completely separated.

Preparation of [(MesNacnac)Mg]2[Al6D6(Fiso)2] (1a-D). [{(μ-N,N-Fiso)Al(D)
(μ-D)}2] (165 mg, 0.21 mmol), prepared as per the procedure for [{(μ-N,N-Fiso)Al
(H)(μ-H)}2]16 (see Supplementary Methods), was added to a suspension of
[{(MesNacnac)Mg}2]27 (300 mg, 0.42 mmol) in benzene (5 mL) in a grease-free
Schlenk flask (20 mm diameter). The mixture was heated to 65 °C for 5 min or until
a bright red solution formed. Allowing the solution to stand at room temperature
for 4 days resulted in the deposition of red crystals of 1a (21 mg, 19% based on
aluminium). M.P. > 150 °C (decomp.); IR (Nujol) ν (cm−1): 1665m, 1546s, 1388vs,
1366vs, 1338s, 1259s, 1231m, 1195m, 1146s, 1098s, 1022s, 856m, 803m, 754s, 698s;
Raman (solid under N2, 514 nm excitation, cm−1): ν= 1353s, 1320m, 523w, 445m,
380w.

Preparation of [(Fiso)Mg(DepNacnac)]. This compound was a by-product in the
preparation of 1b. It was subsequently intentionally synthesised as follows. Toluene
(10 mL) was added to a solid mixture of [{(DepNacnac)Mg(μ-nBu)}2]19 (0.390 g,
0.440 mmol) and FisoH (0.331 g, 0.907 mmol) at room temperature. The mixture
was then stirred for 90 min at 40 °C to afford a colourless solution. The resultant
solution was concentrated under reduced pressure to 3 mL, n-hexane (4 mL) was
added, and the solution was stored at −30 °C overnight to afford colourless crystals
of [(Fiso)Mg(DepNacnac)] (0.31 g, 47%). M.P.: gradually softens above 210 °C and
takes on a yellow colour above 290 °C; 1H NMR (300MHz, C6D6, 303 K): δ= 1.06
(d, 3JH,H= 6.9 Hz, 24H; CH(CH3)2), 1.10 (t, 3JH,H= 7.6 Hz, 12H; CH2CH3),
1.53 (s, 6H; NCCH3), 2.55 (dq, 2,3JH,H= 15.0 Hz, 7.5 Hz, 4H; CH2CH3), 2.67
(dq, 2,3JH,H= 15.0 Hz, 7.5 Hz, 4H; CH2CH3), 2.99 (sept, 3JH,H= 6.9 Hz, 4H; CH
(CH3)2), 4.92 (s, 1H; CH), 6.96–7.10 (m, 12H; Ar-H), 7.94 (s, 1H; N2CH); 13C{1H}
NMR (75.5 MHz, C6D6, 303 K): δ= 13.8 (CH2CH3), 23.8 (NCCH3), 24.6
(CH2CH3), 25.0 (CH(CH3)2), 28.7 (CH(CH3)2), 96.0 (CH), 123.6, 123.9, 125.3,
125.9, 137.2, 142.5, 143.8, 147.4 (Ar-C), 169.9 (NCCH3), 171.5 (N2CH); IR (Nujol):
ν (cm−1)= 1665m, 1595w, 1537s, 1531s, 1505m, 1462s, 1443s, 1390s, 1377s,

1321m, 1274s, 1266s, 1207m, 1181m, 1108m, 1031m, 1018m, 962w, 934m, 854m,
806m, 799m, 755s, 722m; elemental analysis calculated for C50H68N4Mg: C 80.13%,
H 9.14%, N 7.48%; found: C 80.03%, H 9.17, N 7.43%.

Data availability. The X-ray crystallographic coordinates for structures reported
in this study have been deposited at the Cambridge Crystallographic Data Centre
(CCDC), under deposition numbers 1830325–1830331. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.
cam.ac.uk/data_request/cif.
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