118 research outputs found

    EEG Based Color Impairment Detection

    Get PDF
    This study was designed to investigate the effects of colour in EEG signals as the subjects perceive different shades of colours. Color impairment may make it difficult or impossible for a person to engage in certain occupations. Drivers having color impairment may not be able to recognize the different traffic signals lights which may lead to severe accidents those questions the security of other road users. Persons with colour blindness may be legally or practically barred from occupations in which colour perception is an essential part of the job, or in which color perception is important for safety. Different shades of fundamental colours (Red, Green, Blue) were shown in randomized manner. The various colours show various effects in the energy band of the signal. Based on the data obtained from the experiment, we analyse the brain responses which come from color stimuli. The result gives us a measure to estimate the color stimulus

    Comparative study on the properties of carbon prepared from different lignin resources

    Get PDF
    Bio-based carbon particles were produced from different technical lignins, including Kraft lignin, soda lignin, lignoboost and hydrolysis lignin, with different carbonization temperatures (1000 °C and 1400 °C). The structure, morphology, electrical conductivity, and electrochemical performance of the obtained carbon particles were systematically analyzed. The results demonstrate that the lignin resources and carbonization processes have significant impact on the structure and properties of the carbon particles. Kraft lignin carbonized up to 1400 °C gives the highest BET surface area (646 m2 g-1), which makes it a good candidate for making supercapacitors electrodes and a capacitance of 97.2 F g-1 has been obtained with an energy density of 48.6 Wh kg-1 at a power density of 180 W kg-1 at current density of 0.1 A g-1. Soda lignin carbonized up to 1400 °C has showed somewhat graphite like structure and provided highest electrical conductivity of 335 S m-1. These conductive carbon particles can be utilized as reinforcements in composites or can be used for producing electromagnetic interference shielding materials (EMI shielding materials)

    An Analysis of the Public Financial Support Eligibility Rule for French Dependent Elders with Alzheimer’s Disease

    Get PDF
    AbstractBackgroundIt is crucial to define health policies that target patients with the highest needs. In France, public financial support is provided to dependent patients: it can be used to finance informal care time and nonmedical care use. Eligibility for public subsidies and reimbursement of costs is associated with a specific tool: the autonomie gĂ©rontologie groupes iso-ressources (AGGIR) scale score.ObjectiveOur objective was to explore whether patients with Alzheimer’s disease who are eligible for public financial support have greater needs than do noneligible patients.MethodsUsing data from the DĂ©pendance des patients atteints de la maladie d’Alzheimer en France study, we calculated nonmedical care expenditures (in €) using microcosting methods and informal care time demand (hours/month) using the Resource Use in Dementia questionnaire. We measured the burden associated with informal care provision with Zarit Burden Interview. We used a modified two-part model to explore the correlation between public financial support eligibility and these three variables.ResultsWe find evidence of higher informal care use, higher informal caregivers’ burden, and higher care expenditures when patients have an AGGIR scale score corresponding to public financial support eligibility.ConclusionsThe AGGIR scale is useful to target patients with the highest costs and needs. Given our results, public subsidies could be used to further sustain informal caregivers networks by financing programs dedicated to lowering informal caregivers’ burden

    Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells

    Get PDF
    Previous studies have reported that mesenchymal stem cells (MSC) may be isolated from the synovial membrane by the same protocol as that used for synovial fibroblast cultivation, suggesting that MSC correspond to a subset of the adherent cell population, as MSC from the stromal compartment of the bone marrow (BM). The aims of the present study were, first, to better characterize the MSC derived from the synovial membrane and, second, to compare systematically, in parallel, the MSC-containing cell populations isolated from BM and those derived from the synovium, using quantitative assays. Fluorescent-activated cell sorting analysis revealed that both populations were negative for CD14, CD34 and CD45 expression and that both displayed equal levels of CD44, CD73, CD90 and CD105, a phenotype currently known to be characteristic of BM-MSC. Comparable with BM-MSC, such MSC-like cells isolated from the synovial membrane were shown for the first time to suppress the T-cell response in a mixed lymphocyte reaction, and to express the enzyme indoleamine 2,3-dioxygenase activity to the same extent as BM-MSC, which is a possible mediator of this suppressive activity. Using quantitative RT-PCR these data show that MSC-like cells from the synovium and BM may be induced to chondrogenic differentiation and, to a lesser extent, to osteogenic differentiation, but the osteogenic capacities of the synovium-derived MSC were significantly reduced based on the expression of the markers tested (collagen type II and aggrecan or alkaline phosphatase and osteocalcin, respectively). Transcription profiles, determined with the Atlas Human Cytokine/Receptor Array, revealed discrimination between the MSC-like cells from the synovial membrane and the BM-MSC by 46 of 268 genes. In particular, activin A was shown to be one major upregulated factor, highly secreted by BM-MSC. Whether this reflects a different cellular phenotype, a different amount of MSC in the synovium-derived population compared with BM-MSC adherent cell populations or the impact of a different microenvironment remains to be determined. In conclusion, although the BM-derived and synovium-derived MSC shared similar phenotypic and functional properties, both their differentiation capacities and transcriptional profiles permit one to discriminate the cell populations according to their tissue origin

    Smooth muscle cells affect differential nanoparticle accumulation in disturbed blood flow-induced murine atherosclerosis

    Get PDF
    Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, in turn, cause the development of an unstable and stable plaque phenotype, respectively. To evaluate the influence of each WSS condition, in addition to the final plaque phenotype, in determining NP uptake, mice were injected with NPs at intermediate and fully developed stages of plaque growth. The kinetics of artery wall uptake were assessed in vivo using dynamic contrast-enhanced magnetic resonance imaging. At the intermediate stage, there was no difference in NP uptake between the two WSS conditions, although both were different from the control arteries. At the fully-developed stage, however, NP uptake was reduced in plaques induced by low WSS, but not multidirectional WSS. Histological evaluation of plaques induced by low WSS revealed a significant inverse correlation between the presence of smooth muscle cells and NP accumulation, particularly at the plaque-lumen interface, which did not exist with other constituents (lipid and collagen) and was not present in plaques induced by multidirectional WSS. These findings demonstrate that NP accumulation can be used to differentiate between unstable and stable murine atherosclerosis, but accumulation kinetics are not directly influenced by the WSS condition. This tool could be used as a diagnostic to evaluate the efficacy of experimental therapeutics for atherosclerosis

    5-hydroxymethylcytosine marks promoters in colon that resist DNA hypermethylation in cancer

    Get PDF
    The authors would like to acknowledge the support of The University of Cambridge, Cancer Research UK (CRUK SEB-Institute Group Award A ref10182; CRUK Senior fellowship C10112/A11388 to AEKI) and Hutchison Whampoa Limited. The Human Research Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre. FF is a ULB Professor funded by grants from the F.N.R.S. and Télévie, the IUAP P7/03 programme, the ARC (AUWB-2010-2015 ULB-No 7), the WB Health program and the Fonds Gaston Ithier. Data access: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jpwzvsowiyuamzs&acc=GSE47592Background : The discovery of cytosine hydroxymethylation (5hmC) as a mechanism that potentially controls DNA methylation changes typical of neoplasia prompted us to investigate its behaviour in colon cancer. 5hmC is globally reduced in proliferating cells such as colon tumours and the gut crypt progenitors, from which tumours can arise. Results : Here, we show that colorectal tumours and cancer cells express Ten-Eleven-Translocation (TET) transcripts at levels similar to normal tissues. Genome-wide analyses show that promoters marked by 5hmC in normal tissue, and those identified as TET2 targets in colorectal cancer cells, are resistant to methylation gain in cancer. In vitro studies of TET2 in cancer cells confirm that these promoters are resistant to methylation gain independently of sustained TET2 expression. We also find that a considerable number of the methylation gain-resistant promoters marked by 5hmC in normal colon overlap with those that are marked with poised bivalent histone modifications in embryonic stem cells. Conclusions : Together our results indicate that promoters that acquire 5hmC upon normal colon differentiation are innately resistant to neoplastic hypermethylation by mechanisms that do not require high levels of 5hmC in tumours. Our study highlights the potential of cytosine modifications as biomarkers of cancerous cell proliferation.Publisher PDFPeer reviewe

    Gammapy: A Python package for gamma-ray astronomy

    Full text link
    In this article, we present Gammapy, an open-source Python package for the analysis of astronomical Îł\gamma-ray data, and illustrate the functionalities of its first long-term-support release, version 1.0. Built on the modern Python scientific ecosystem, Gammapy provides a uniform platform for reducing and modeling data from different Îł\gamma-ray instruments for many analysis scenarios. Gammapy complies with several well-established data conventions in high-energy astrophysics, providing serialized data products that are interoperable with other software packages. Starting from event lists and instrument response functions, Gammapy provides functionalities to reduce these data by binning them in energy and sky coordinates. Several techniques for background estimation are implemented in the package to handle the residual hadronic background affecting Îł\gamma-ray instruments. After the data are binned, the flux and morphology of one or more Îł\gamma-ray sources can be estimated using Poisson maximum likelihood fitting and assuming a variety of spectral, temporal, and spatial models. Estimation of flux points, likelihood profiles, and light curves is also supported. After describing the structure of the package, we show, using publicly available Îł\gamma-ray data, the capabilities of Gammapy in multiple traditional and novel Îł\gamma-ray analysis scenarios, such as spectral and spectro-morphological modeling and estimations of a spectral energy distribution and a light curve. Its flexibility and power are displayed in a final multi-instrument example, where datasets from different instruments, at different stages of data reduction, are simultaneously fitted with an astrophysical flux model.Comment: 26 pages, 16 figure

    Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction : a review

    Get PDF
    Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 3249-3281, doi:10.1175/2010JCLI3343.1.Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.Funding for LT was provided by the NASA-sponsored Ocean Surface Topography Science Team, under Contract 1267196 with the University of Washington, administered by the Jet Propulsion Laboratory. HN was supported in part by the Grant-in-Aid 18204044 by the Japan Society for Promotion for Science (JSPS) and the Global Environment Research Fund (S-5) of the Japanese Ministry of Environment. YK was supported by the Kerr Endowed Fund and Penzance Endowed Fund
    • 

    corecore