236 research outputs found
Gas and dust in Comet 2P/Encke observed in the visual and submillimeter wavelength ranges
In November 2003 Comet 2P/Encke was observed simultaneously with the 10-m Heinrich–Hertz Submillimeter Telescope on Mount Graham, Arizona, USA, and the 2-m optical telescope on Mount Rozhen, Bulgaria. Simultaneous radio observations of the 4–3 and 3–2 rotational transitions of HCN and the 0–0 transition of the CN violet band system provide a three-dimensional view on the comet. The observations are consistent with outgassing from the source region I with location and pole position of Comet Encke taken from [14]. The outflow speed is 1.2 km. There is some evidence for another possible parent for CN besides HCN. The visual dust coma of Comet Encke is nearly spherical with a diameter of about 1000 km and a slight extension into Comet Encke’s fan. The polarization of the observed NH₂ transition at 662 nm is 7% at a phase angle of 94.5°, close to the value for two-atomic molecules. At this phase angle and a wavelength of 642 nm the polarization of Comet Encke’s dust is greater than 30%, i.e., exceeds the value for so-called dusty comets
Dust observations of Comet 9P/Tempel 1 at the time of the Deep Impact
On 4 July 2005 at 05:52 UT, the impactor of NASA's Deep Impact (DI) mission
crashed into comet 9P/Tempel 1 with a velocity of about 10 km/s. The material
ejected by the impact expanded into the normal coma, produced by ordinary
cometary activity.
The characteristics of the non-impact coma and cloud produced by the impact
were studied by observations in the visible wavelengths and in the near-IR. The
scattering characteristics of the "normal" coma of solid particles were studied
by comparing images in various spectral regions, from the UV to the near-IR.
For the non-impact coma, a proxy of the dust production has been measured in
various spectral regions. The presence of sublimating grains has been detected.
Their lifetime was found to be about 11 hours. Regarding the cloud produced by
the impact, the total geometric cross section multiplied by the albedo was
measured as a function of the color and time. The projected velocity appeared
to obey a Gaussian distribution with the average velocity of the order of 115
m/s. By comparing the observations taken about 3 hours after the impact, we
have found a strong decrease in the cross section in J filter, while that in Ks
remained almost constant. This is interpreted as the result of sublimation of
grains dominated by particles of sizes of the order of some microns.Comment: Accepted by A&
The Dusty View of DI from ESO Chile
Around the time of the impact of NASA's Deep Impact (DI) mission at comet 9P/Tempel 1, in total 6 telescopes with altogether 7 different instruments, located at the La Silla (LSO) and Paranal (VLT) Observatories of the European Southern Observatory (ESO) in Chile, were used to characterize the dust properties before and after the event. The ejecta cloud expanded at an average speed of about 200 ms[SUP]-1[/SUP]during the first hours after the event. It reached stagnation distance of 25000 km about 3 days after impact. The pre-impact dust jet and fan activity (`porcupine' pattern) remained undisturbed after impact. In our measurements the jet activity can be traced to a few 100 km nucleus distance. In total 9 comastructures are identified which may originate from at least 4 regions of enhanced dust emission on the nucleus - one of this region may in fact be multiple. No obvious signatures of a new active region created by DI are found. The overall dust production during the impact compares to about 5-10 h of normal activity. The global expansion geometry of the DI cloud is compatible with a majority of dust grains in the micron size range. Indications exist for asymmetric brightness and colour distributions of the dust in the ejecta cloud. The dust temperature rose from about 280-290 K before to 330 K one day after the event and fell to pre-impact level the day thereafter. The dust reflected sunlight was found to be linearly polarized at about 7.5% in the visible and near-IR, at constant level within about 4000 km from the nucleus. No circular polarization of the dust is detected.Peer reviewe
Principles of meiotic chromosome assembly revealed in S. cerevisiae
During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process
The Coupled Electron-Ion Monte Carlo Method
In these Lecture Notes we review the principles of the Coupled Electron-Ion
Monte Carlo methods and discuss some recent results on metallic hydrogen.Comment: 38 pages, 6 figures, Lecture notes for the International School of
Solid State Physics, 34th course: "Computer Simulation in Condensed Matter:
from Materials to Chemical Biology", 20 July-1 August 2005 Erice (Italy). To
appear in Lecture Notes in Physics (2006
microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states.
© 2014 Macmillan Publishers LimitedThis is an open access article that is freely available in ORE or from the publisher's web site. Please cite the published version.Progenitor maintenance, timed differentiation and the potential to enter quiescence are three fundamental processes that underlie the development of any organ system. In the nervous system, progenitor cells show short-period oscillations in the expression of the transcriptional repressor Hes1, while neurons and quiescent progenitors show stable low and high levels of Hes1, respectively. Here we use experimental data to develop a mathematical model of the double-negative interaction between Hes1 and a microRNA, miR-9, with the aim of understanding how cells transition from one state to another. We show that the input of miR-9 into the Hes1 oscillator tunes its oscillatory dynamics, and endows the system with bistability and the ability to measure time to differentiation. Our results suggest that a relatively simple and widespread network of cross-repressive interactions provides a unifying framework for progenitor maintenance, the timing of differentiation and the emergence of alternative cell states.Wellcome Trus
The composition of the protosolar disk and the formation conditions for comets
Conditions in the protosolar nebula have left their mark in the composition
of cometary volatiles, thought to be some of the most pristine material in the
solar system. Cometary compositions represent the end point of processing that
began in the parent molecular cloud core and continued through the collapse of
that core to form the protosun and the solar nebula, and finally during the
evolution of the solar nebula itself as the cometary bodies were accreting.
Disentangling the effects of the various epochs on the final composition of a
comet is complicated. But comets are not the only source of information about
the solar nebula. Protostellar disks around young stars similar to the protosun
provide a way of investigating the evolution of disks similar to the solar
nebula while they are in the process of evolving to form their own solar
systems. In this way we can learn about the physical and chemical conditions
under which comets formed, and about the types of dynamical processing that
shaped the solar system we see today.
This paper summarizes some recent contributions to our understanding of both
cometary volatiles and the composition, structure and evolution of protostellar
disks.Comment: To appear in Space Science Reviews. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-
Integrating transposable elements in the 3D genome
Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome
Increased blood pressure in adult offspring of families with Balkan Endemic Nephropathy: a prospective study
BACKGROUND: Previous studies have linked smaller kidney dimensions to increased blood pressure. However, patients with Balkan Endemic Nephropathy (BEN), whose kidneys shrink during the course of the disease, do not manifest increased blood pressure. The authors evaluated the relationship between kidney cortex width, kidney length, and blood pressure in the offspring of BEN patients and controls. METHODS: 102 offspring of BEN patients and 99 control offspring of non-BEN hospital patients in the Vratza District, Bulgaria, were enrolled in a prospective study and examined twice (2003/04 and 2004/05). Kidney dimensions were determined using ultrasound, blood pressure was measured, and medical information was collected. The parental disease of BEN was categorized into three groups: mother, father, or both parents. Repeated measurements were analyzed with mixed regression models. RESULTS: In all participants, a decrease in minimal kidney cortex width of 1 mm was related to an increase in systolic blood pressure of 1.4 mm Hg (p = 0.005). There was no association between kidney length and blood pressure. A maternal history of BEN was associated with an increase in systolic blood pressure of 6.7 mm Hg (p = 0.03); paternal BEN, +3.2 mm Hg (p = 0.35); or both parents affected, +9.9 mm Hg (p = 0.002). There was a similar relation of kidney cortex width and parental history of BEN with pulse pressure; however, no association with diastolic blood pressure was found. CONCLUSION: In BEN and control offspring, a smaller kidney cortex width predisposed to higher blood pressure. Unexpectedly, a maternal history of BEN was associated with average increased systolic blood pressure in offspring
- …