1,169 research outputs found

    Stellar atmosphere parameters with MAx, a MAssive compression of x^2 for spectral fitting

    Full text link
    MAx is a new tool to estimate parameters from stellar spectra. It is based on the maximum likelihood method, with the likelihood compressed in a way that the information stored in the spectral fluxes is conserved. The compressed data are given by the size of the number of parameters, rather than by the number of flux points. The optimum speed-up reached by the compression is the ratio of the data set to the number of parameters. The method has been tested on a sample of low-resolution spectra from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey for the estimate of metallicity, effective temperature and surface gravity, with accuracies of 0.24 dex, 130K and 0.5 dex, respectively. Our stellar parameters and those recovered by the SEGUE Stellar Parameter Pipeline agree reasonably well. A small sample of high-resolution VLT-UVES spectra were also used to test the method and the results have been compared to a more classical approach. The speed and multi-resolution capability of MAx combined with its performance compared with other methods indicates that it will be a useful tool for the analysis of upcoming spectral surveys.Comment: 17 pages, 10 figures, minor changes after the chief language editor. A&A, in pres

    The thick disk rotation-metallicity correlation as a fossil of an "inverse chemical gradient" in the early Galaxy

    Full text link
    The thick disk rotation--metallicity correlation, \partial V_\phi/\partial[Fe/H] =40\div 50 km s^{-1}dex^{-1} represents an important signature of the formation processes of the galactic disk. We use nondissipative numerical simulations to follow the evolution of a Milky Way (MW)-like disk to verify if secular dynamical processes can account for this correlation in the old thick disk stellar population. We followed the evolution of an ancient disk population represented by 10 million particles whose chemical abundances were assigned by assuming a cosmologically plausible radial metallicity gradient with lower metallicity in the inner regions, as expected for the 10-Gyr-old MW. Essentially, inner disk stars move towards the outer regions and populate layers located at higher |z|. A rotation--metallicity correlation appears, which well resembles the behaviour observed in our Galaxy at a galactocentric distance between 8 kpc and 10 kpc. In particular,we measure a correlation of \partial V_\phi/\partial[Fe/H]\simeq 60 km s^{-1}dex^{-1} for particles at 1.5 kpc < |z| < 2.0 kpc that persists up to 6 Gyr. Our pure N-body models can account for the V_\phi vs. [Fe/H] correlation observed in the thick disk of our Galaxy, suggesting that processes internal to the disk such as heating and radial migration play a role in the formation of this old stellar component. In this scenario, the positive rotation-metallicity correlation of the old thick disk population would represent the relic signature of an ancient "inverse" chemical (radial) gradient in the inner Galaxy, which resulted from accretion of primordial gas.Comment: Accepted for publication on Astronomy and Astrophysic

    Helium reionization and the thermal proximity effect

    Full text link
    We examine the temperature structure of the intergalactic medium IGM) surounding a hard radiation source, such as a Quasi-Stellar Object (QSO), as it responds to the onset of helium reionization by the source. We model the reionization using a radiative transfer (RT) code coupled to a particle-mesh (PM) N-body code. Neutral hydrogen and helium are initially ionized by a starburst spectrum, which is allowed to gradually evolve into a power law spectrum (fnu ~ nu^(-0.5)). Multiple simulations were performed with different times for the onset and dominance of the hard spectrum, with onset redshifts ranging from z = 3.5 to 5.5. The source is placed in a high-density region to mimic the expected local environment of a QSO. Simulations with the source placed in a low-density environment were also performed as control cases to explore the role of the environment on the properties of the surrounding IGM. We find in both cases that the IGM temperature within the HeIII region produced exceeds the IGM temperature before full helium reionization, resulting in a "thermal proximity effect", but that the temperature in the HeIII region increases systematically with distance from the source. With time the temperature relaxes with a reduced spread as a function of impact parameter along neighbouring lines of sight, although the trend continues to persist until z = 2. Such a trend could be detected using the widths of intervening metal absorption systems using high resolution, high signal-to-noise ratio spectra.Comment: 17 pages, 12 figures, for publication in MNRA

    Phylogeny and Classification of the Trapdoor Spider Genus Myrmekiaphila: An Integrative Approach to Evaluating Taxonomic Hypotheses

    Get PDF
    Background: Revised by Bond and Platnick in 2007, the trapdoor spider genus Myrmekiaphila comprises 11 species. Species delimitation and placement within one of three species groups was based on modifications of the male copulatory device. Because a phylogeny of the group was not available these species groups might not represent monophyletic lineages; species definitions likewise were untested hypotheses. The purpose of this study is to reconstruct the phylogeny of Myrmekiaphila species using molecular data to formally test the delimitation of species and species-groups. We seek to refine a set of established systematic hypotheses by integrating across molecular and morphological data sets. Methods and Findings: Phylogenetic analyses comprising Bayesian searches were conducted for a mtDNA matrix composed of contiguous 12S rRNA, tRNA-val, and 16S rRNA genes and a nuclear DNA matrix comprising the glutamyl and prolyl tRNA synthetase gene each consisting of 1348 and 481 bp, respectively. Separate analyses of the mitochondrial and nuclear genome data and a concatenated data set yield M. torreya and M. millerae paraphyletic with respect to M. coreyi and M. howelli and polyphyletic fluviatilis and foliata species groups. Conclusions: Despite the perception that molecular data present a solution to a crisis in taxonomy, studies like this demonstrate the efficacy of an approach that considers data from multiple sources. A DNA barcoding approach during the species discovery process would fail to recognize at least two species (M. coreyi and M. howelli) whereas a combine

    Attention on Weak Ties in Social and Communication Networks

    Full text link
    Granovetter's weak tie theory of social networks is built around two central hypotheses. The first states that strong social ties carry the large majority of interaction events; the second maintains that weak social ties, although less active, are often relevant for the exchange of especially important information (e.g., about potential new jobs in Granovetter's work). While several empirical studies have provided support for the first hypothesis, the second has been the object of far less scrutiny. A possible reason is that it involves notions relative to the nature and importance of the information that are hard to quantify and measure, especially in large scale studies. Here, we search for empirical validation of both Granovetter's hypotheses. We find clear empirical support for the first. We also provide empirical evidence and a quantitative interpretation for the second. We show that attention, measured as the fraction of interactions devoted to a particular social connection, is high on weak ties --- possibly reflecting the postulated informational purposes of such ties --- but also on very strong ties. Data from online social media and mobile communication reveal network-dependent mixtures of these two effects on the basis of a platform's typical usage. Our results establish a clear relationships between attention, importance, and strength of social links, and could lead to improved algorithms to prioritize social media content

    The Case for the Dual Halo of the Milky Way

    Full text link
    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezi\'c et al. When compared to the recommended relation from Ivezi\'c et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schoenrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezi\'{c} et al. for low-metallicity dwarfs to within 6-10%. Schoenrich et al. also point out that intermediate-gravity stars (3.5 <= log g <= 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remains. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.Comment: 46 pages, 2 tables, 15 figures, Accepted for publication in the Astrophysical Journa

    Treatment Outcome in Patients Receiving Assertive Community Treatment

    Get PDF
    In an observational study of severely mentally ill patients treated in assertive community treatment (ACT) teams, we investigated how treatment outcome was associated with demographic factors, clinical factors, and motivation for treatment. To determine psychosocial outcome, patients were routinely assessed using the Health of the Nation Outcome Scales (HoNOS). Trends over time were analyzed using a mixed model with repeated measures. The HoNOS total score was modeled as a function of treatment duration and patient-dependent covariates. Data comprised 637 assessments of 139 patients; mean duration of follow-up was 27.4 months (SD = 5.4). Substance abuse, higher age, problems with motivation, and lower educational level were associated with higher HoNOS total scores (i.e., worse outcome). To improve treatment outcome, we recommend better implementation of ACT, and also the implementation of additional programs targeting subgroups which seem to benefit less from ACT

    Moyal star product approach to the Bohr-Sommerfeld approximation

    Full text link
    The Bohr-Sommerfeld approximation to the eigenvalues of a one-dimensional quantum Hamiltonian is derived through order 2\hbar^2 (i.e., including the first correction term beyond the usual result) by means of the Moyal star product. The Hamiltonian need only have a Weyl transform (or symbol) that is a power series in \hbar, starting with 0\hbar^0, with a generic fixed point in phase space. The Hamiltonian is not restricted to the kinetic-plus-potential form. The method involves transforming the Hamiltonian to a normal form, in which it becomes a function of the harmonic oscillator Hamiltonian. Diagrammatic and other techniques with potential applications to other normal form problems are presented for manipulating higher order terms in the Moyal series.Comment: 27 pages, no figure

    The Milky Way Tomography With SDSS. III. Stellar Kinematics

    Get PDF
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator
    corecore