353 research outputs found

    Freedom of the Press and Public Access: Toward a Theory of Partial Regulation of the Mass Media

    Get PDF
    The purpose of this article is to examine critically these decisions and to explore whether there is any rational basis for limiting to one sector of the media the legislature\u27s power to impose access regulation. The article takes the position that the Court has pursued the right path for the wrong reasons. There is a powerful rationality underlying the current decision to restrict regulatory authority to broadcasting, but it is not, as is commonly supposed, that broadcasting is somehow different in principle from the print media and that it therefore is not deserving of equivalent first amendment treatment. As will be discussed in section I, the Court\u27s attempt to distinguish broadcasting on the basis of its dependence on scarce resources (the electromagnetic spectrum) is unpersuasive; moreover, whatever validity the distinction may once have had is now being undercut by the advance of new technology in the form of cable television. Further, other possible points of distinction that may be raised, such as the broadcasting industry\u27s high level of concentration and television\u27s purported special impact on its viewers, do not presently justify the different first amendment treatment. For reasons that will be developed in section II, access regulation has been treated differently in the context of broadcasting than it has in that of the print media largely because we have long assumed that in some undefined way broadcasting is, in fact, different. Rather than isolate broadcasting from our constitutional traditions, however, the Court should now acknowledge that for first amendment purposes broadcasting is not fundamentally different from the print media. Such an admission would not compel the Court either to permit access regulation throughout the press or to disallow it entirely. There is, we shall see, an alternative solution

    Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction

    Get PDF
    This publication was made possible by NIH Grant P20 RR-17708-05 from the National Center for Research Resources of the National Institutes of Health. K.M.M. was a recipient of a National Institutes of Health Predoctoral Training Grant Fellowship (GM08545).PvdA catalyzes the hydroxylation of the sidechain primary amine of ornithine in the initial step of the biosynthesis of the Pseudomonas aeruginosa siderophore pyoverdin. The reaction requires FAD, NADPH, and O2. PvdA uses the same co-substrates as several flavin-dependent hydroxylases that differ one from another in the kinetic mechanisms of their oxidative and reductive half-reactions. Therefore, the mechanism of PvdA was determined by absorption stopped-flow experiments. By contrast to some flavin-dependent hydroxylases (notably, p-hydroxybenzoate hydroxylase), binding of the hydroxylation target is not required to trigger reduction of the flavin by NADPH: the reductive half-reaction is equally facile in the presence and absence of ornithine. Reaction of O2 with FADH2 in the oxidative half-reaction is accelerated by ornithine 80-fold, providing a mechanism by which PvdA can ensure coupling of NADPH and ornithine oxidation. In the presence of ornithine, the expected C(4a)-hydroperoxyflavin intermediate with 390-nm absorption accumulates and decays to the C(4a)-hydroxyflavin in a kinetically competent fashion. The slower oxidative half-reaction that occurs in the absence of ornithine involves accumulation of an oxygenated flavin species and two subsequent states that are tentatively assigned as C(4a)-peroxy- and -hydroperoxyflavin intermediates and the oxidized flavin. The enzyme generates stoichiometric hydrogen peroxide in lieu of hydroxyornithine. The data suggest that PvdA employs a kinetic mechanism that is a hybrid of those previously documented for other flavin-dependent hydroxylases

    Lethal Mutagenesis of Picornaviruses with N-6-Modified Purine Nucleoside Analogues

    Get PDF
    RNA viruses exhibit extraordinarily high mutation rates during genome replication. Nonnatural ribonucleosides that can increase the mutation rate of RNA viruses by acting as ambiguous substrates during replication have been explored as antiviral agents acting through lethal mutagenesis. We have synthesized novel N-6-substituted purine analogues with ambiguous incorporation characteristics due to tautomerization of the nucleobase. The most potent of these analogues reduced the titer of poliovirus (PV) and coxsackievirus (CVB3) over 1,000-fold during a single passage in HeLa cell culture, with an increase in transition mutation frequency up to 65-fold. Kinetic analysis of incorporation by the PV polymerase indicated that these analogues were templated ambiguously with increased efficiency compared to the known mutagenic nucleoside ribavirin. Notably, these nucleosides were not efficient substrates for cellular ribonucleotide reductase in vitro, suggesting that conversion to the deoxyriboucleoside may be hindered, potentially limiting genetic damage to the host cell. Furthermore, a high-fidelity PV variant (G64S) displayed resistance to the antiviral effect and mutagenic potential of these analogues. These purine nucleoside analogues represent promising lead compounds in the development of clinically useful antiviral therapies based on the strategy of lethal mutagenesis

    Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study

    Get PDF
    How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(II) and manganese(II) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe[superscript II] as a Lewis acid under normal growth conditions but which switch to Mn[superscript II] under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe[superscript II] and Mn[superscript II], the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, “discrimination” between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.National Institutes of Health (U.S.) (Grant GM81393

    Pair-breaking quantum phase transition in superconducting nanowires

    Full text link
    A quantum phase transition (QPT) between distinct ground states of matter is a wide-spread phenomenon in nature, yet there are only a few experimentally accessible systems where the microscopic mechanism of the transition can be tested and understood. These cases are unique and form the experimentally established foundation for our understanding of quantum critical phenomena. Here we report the discovery that a magnetic-field-driven QPT in superconducting nanowires - a prototypical 1d-system - can be fully explained by the critical theory of pair-breaking transitions characterized by a correlation length exponent ν1\nu \approx 1 and dynamic critical exponent z2z \approx 2. We find that in the quantum critical regime, the electrical conductivity is in agreement with a theoretically predicted scaling function and, moreover, that the theory quantitatively describes the dependence of conductivity on the critical temperature, field magnitude and orientation, nanowire cross sectional area, and microscopic parameters of the nanowire material. At the critical field, the conductivity follows a T(d2)/zT^{(d-2)/z} dependence predicted by phenomenological scaling theories and more recently obtained within a holographic framework. Our work uncovers the microscopic processes governing the transition: The pair-breaking effect of the magnetic field on interacting Cooper pairs overdamped by their coupling to electronic degrees of freedom. It also reveals the universal character of continuous quantum phase transitions.Comment: 22 pages, 5 figure

    Molecular design and control of fullerene-based bi-thermoelectric materials

    Get PDF
    Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C8 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions

    Hydrogen Donation but not Abstraction by a Tyrosine (Y68) During Endoperoxide Installation by Verruculogen Synthase (FtmOx1)

    Get PDF
    Hydrogen-atom transfer (HAT) from a substrate carbon to an iron(IV)-oxo (ferryl) intermediate initiates a diverse array of enzymatic transformations. For outcomes other than hydroxylation, coupling of the resultant carbon radical and hydroxo ligand (oxygen rebound) must generally be averted. A recent study of FtmOx1, a fungal iron(II)- and 2-(oxo)glutarate-dependent oxygenase that installs the endoperoxide of verruculogen by adding O_2 between carbons 21 and 27 of fumitremorgin B, posited that tyrosine (Tyr or Y) 224 serves as HAT intermediary to separate the C21 radical (C21•) and Fe(III)–OH HAT products and prevent rebound. Our reinvestigation of the FtmOx1 mechanism revealed, instead, direct HAT from C21 to the ferryl complex and surprisingly competitive rebound. The C21-hydroxylated (rebound) product, which undergoes deprenylation, predominates when low [O_2] slows C21•–O_2 coupling in the next step of the endoperoxidation pathway. This pathway culminates with addition of the C21–O–O• peroxyl adduct to olefinic C27 followed by HAT to the C26• from a Tyr. The last step results in sequential accumulation of Tyr radicals, which are suppressed without detriment to turnover by inclusion of the reductant, ascorbate. Replacement of each of four candidates for the proximal C26 H• donor (including Y224) with phenylalanine (F) revealed that only the Y68F variant (i) fails to accumulate the first Tyr• and (ii) makes an altered major product, identifying Y68 as the donor. The implied proximities of C21 to the iron cofactor and C26 to Y68 support a new docking model of the enzyme–substrate complex that is consistent with all available data
    corecore