4,481 research outputs found

    A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams

    Get PDF
    An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is to accumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed

    Learning from erroneous models using SCYDynamics

    Get PDF
    Dynamic phenomena are common in science education. Students can learn about such system dynamic processes through model based learning activities. This paper describes a study on the effects of a learning from erroneous models approach using the learning environment SCYDynamics. The study compared three conditions. Two experimental conditions where students had to correct errors in a model were contrasted to working with a correct model. The experimental conditions differed on whether or not the students had to detect the errors before correcting them. Results indicate that this approach enhanced students’ model testing and revising activities. Furthermore this approach was found to have a beneficial effect on learning common errors. Contrary to expectations this approach showed no learning effect on domain knowledge acquisition. The discussion further elaborates on improvements that might enhance this learning from erroneous model approac

    A framework for power analysis using a structural equation modelling procedure

    Get PDF
    BACKGROUND: This paper demonstrates how structural equation modelling (SEM) can be used as a tool to aid in carrying out power analyses. For many complex multivariate designs that are increasingly being employed, power analyses can be difficult to carry out, because the software available lacks sufficient flexibility. Satorra and Saris developed a method for estimating the power of the likelihood ratio test for structural equation models. Whilst the Satorra and Saris approach is familiar to researchers who use the structural equation modelling approach, it is less well known amongst other researchers. The SEM approach can be equivalent to other multivariate statistical tests, and therefore the Satorra and Saris approach to power analysis can be used. METHODS: The covariance matrix, along with a vector of means, relating to the alternative hypothesis is generated. This represents the hypothesised population effects. A model (representing the null hypothesis) is then tested in a structural equation model, using the population parameters as input. An analysis based on the chi-square of this model can provide estimates of the sample size required for different levels of power to reject the null hypothesis. CONCLUSIONS: The SEM based power analysis approach may prove useful for researchers designing research in the health and medical spheres

    Pulsed extraction of ionization from helium buffer gas

    Full text link
    The migration of intense ionization created in helium buffer gas under the influence of applied electric fields is considered. First the chemical evolution of the ionization created by fast heavy-ion beams is described. Straight forward estimates of the lifetimes for charge exchange indicate a clear suppression of charge exchange during ion migration in low pressure helium. Then self-consistent calculations of the migration of the ions in the electric field of a gas-filled cell at the National Superconducting Cyclotron Laboratory (NSCL) using a Particle-In-Cell computer code are presented. The results of the calculations are compared to measurements of the extracted ion current caused by beam pulses injected into the NSCL gas cell.Comment: Accepted for pubilication in Nucl. Instrum. Meth. B, 14 pages, 8 figure

    Position-sensitive ion detection in precision Penning trap mass spectrometry

    Get PDF
    A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure

    Penning traps as a versatile tool for precise experiments in fundamental physics

    Full text link
    This review article describes the trapping of charged particles. The main principles of electromagnetic confinement of various species from elementary particles to heavy atoms are briefly described. The preparation and manipulation with trapped single particles, as well as methods of frequency measurements, providing unprecedented precision, are discussed. Unique applications of Penning traps in fundamental physics are presented. Ultra-precise trap-measurements of masses and magnetic moments of elementary particles (electrons, positrons, protons and antiprotons) confirm CPT-conservation, and allow accurate determination of the fine-structure constant alpha and other fundamental constants. This together with the information on the unitarity of the quark-mixing matrix, derived from the trap-measurements of atomic masses, serves for assessment of the Standard Model of the physics world. Direct mass measurements of nuclides targeted to some advanced problems of astrophysics and nuclear physics are also presented

    Model selection in High-Dimensions: A Quadratic-risk based approach

    Full text link
    In this article we propose a general class of risk measures which can be used for data based evaluation of parametric models. The loss function is defined as generalized quadratic distance between the true density and the proposed model. These distances are characterized by a simple quadratic form structure that is adaptable through the choice of a nonnegative definite kernel and a bandwidth parameter. Using asymptotic results for the quadratic distances we build a quick-to-compute approximation for the risk function. Its derivation is analogous to the Akaike Information Criterion (AIC), but unlike AIC, the quadratic risk is a global comparison tool. The method does not require resampling, a great advantage when point estimators are expensive to compute. The method is illustrated using the problem of selecting the number of components in a mixture model, where it is shown that, by using an appropriate kernel, the method is computationally straightforward in arbitrarily high data dimensions. In this same context it is shown that the method has some clear advantages over AIC and BIC.Comment: Updated with reviewer suggestion

    A Study of the Cyclotron Gas-Stopping Concept for the Production of Rare Isotope Beams

    Full text link
    The proposed cyclotron gas-stopping scheme for the efficient thermalization of intense rare isotope beams is examined. Simulations expand on previous studies and expose many complications of such an apparatus arising from physical effects not accounted for properly in previous work. The previously proposed cyclotron gas-stopper geometry is found to have a near null efficiency, but extended simulations suggest that a device with a much larger pole gap could achieve a stopping efficiency approaching roughly 90% and at least a 10 times larger acceptance. However, some of the advantages that were incorrectly predicted in previous simulations for high intensity operation of this device are compromised.Comment: Accepted for publication in Nuclear Inst. and Methods in Physics Research,
    • …
    corecore