In this article we propose a general class of risk measures which can be used
for data based evaluation of parametric models. The loss function is defined as
generalized quadratic distance between the true density and the proposed model.
These distances are characterized by a simple quadratic form structure that is
adaptable through the choice of a nonnegative definite kernel and a bandwidth
parameter. Using asymptotic results for the quadratic distances we build a
quick-to-compute approximation for the risk function. Its derivation is
analogous to the Akaike Information Criterion (AIC), but unlike AIC, the
quadratic risk is a global comparison tool. The method does not require
resampling, a great advantage when point estimators are expensive to compute.
The method is illustrated using the problem of selecting the number of
components in a mixture model, where it is shown that, by using an appropriate
kernel, the method is computationally straightforward in arbitrarily high data
dimensions. In this same context it is shown that the method has some clear
advantages over AIC and BIC.Comment: Updated with reviewer suggestion