284 research outputs found

    Discovery and genotyping of structural variation from long-read haploid genome sequence data

    Get PDF
    In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that &gt;89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF &gt; 1%). We estimate that this theoretical human diploid differs by as much as ∼16 Mbp with respect to the human reference, with long-read sequencing data providing a fivefold increase in sensitivity for genetic variants ranging in size from 7 bp to 1 kbp compared with short-read sequence data. Although a large fraction of genetic variants were not detected by short-read approaches, once the alternate allele is sequence-resolved, we show that 61% of SVs can be genotyped in short-read sequence data sets with high accuracy. Uncoupling discovery from genotyping thus allows for the majority of this missed common variation to be genotyped in the human population. Interestingly, when we repeat SV detection on a pseudodiploid genome constructed in silico by merging the two haploids, we find that ∼59% of the heterozygous SVs are no longer detected by SMRT-SV. These results indicate that haploid resolution of long-read sequencing data will significantly increase sensitivity of SV detection.</jats:p

    Laminin-332 alters connexin profile, dye coupling and intercellular Ca(2+ )waves in ciliated tracheal epithelial cells

    Get PDF
    BACKGROUND: Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin α3β3γ2 (LM-332) proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC). METHODS: Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca(2+ )waves. Expression of connexin (Cx) mRNA and proteins were assayed by reverse transcriptase – polymerase chain reaction and immunocytochemistry, respectively. RESULTS: When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca(2+ )waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca(2+)waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins. CONCLUSION: Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function

    Resolving the complexity of the human genome using single-molecule sequencing

    Get PDF
    The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome - 78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology

    The Thread of Ariadne: A Collection of Essays by the Faculty of the Cooperative Research Center in the Humanities Dominican College of San Rafael

    Get PDF
    This volume is a Festschrift with a difference: a collection of essays written by colleagues to honor students -- past, present, future -- rather than an aged academic kindred spirit. the end-product of a \u27Great Conversation\u27 which extended over two years (1985-1987), the volume contains ten essays by nine Dominican College faculty members. Each essay has been developed in the context of inter-disciplinary discussions to which specialists in art history, history, literature, and philosophy contributed their knowledge and insights. Lest that statement suggest placid armchair soliloquies. let me quickly add that the discussions were frank and vigorous, and served to focus, refine, and sometimes change altogether the final topics of the essays. ~ from the Introduction by Sister M. Samuel Conlan, O.P.https://scholar.dominican.edu/books/1097/thumbnail.jp

    Complete Genome Sequence of Curtobacterium sp. Strain MR_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts

    Get PDF
    Here, we present the 3,443,800-bp complete genome sequence of Curtobacterium sp. strain MR_MD2014 (phylum Actinobacteria). This strain was isolated from soil in Woods Hole, MA, as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    A random six-phase switch regulates pneumococcal virulence via global epigenetic changes

    Get PDF
    Streptococcus pneumoniae (the pneumococcus) is the world's foremost bacterial pathogen in both morbidity and mortality. Switching between phenotypic forms (or 'phases') that favour asymptomatic carriage or invasive disease was first reported in 1933. Here, we show that the underlying mechanism for such phase variation consists of genetic rearrangements in a Type I restriction-modification system (SpnD39III). The rearrangements generate six alternative specificities with distinct methylation patterns, as defined by single-molecule, real-time (SMRT) methylomics. The SpnD39III variants have distinct gene expression profiles. We demonstrate distinct virulence in experimental infection and in vivo selection for switching between SpnD39III variants. SpnD39III is ubiquitous in pneumococci, indicating an essential role in its biology. Future studies must recognize the potential for switching between these heretofore undetectable, differentiated pneumococcal subpopulations in vitro and in vivo. Similar systems exist in other bacterial genera, indicating the potential for broad exploitation of epigenetic gene regulation.Ana Sousa Manso, Melissa H. Chai, John M. Atack, Leonardo Furi, Megan De Ste Croix, Richard Haigh, Claudia Trappetti, Abiodun D. Ogunniyi, Lucy K. Shewell, Matthew Boitano, Tyson A. Clark, Jonas Korlach, Matthew Blades, Evgeny Mirkes, Alexander N. Gorban, James C. Paton, Michael P. Jennings, Marco R. Oggion

    Role of potassium and pH on the initiation of sperm motility in the European eel

    Full text link
    [EN] The role of potassium from the seminal plasma and/or the activation media was examined by selectively removing from this media, and by testing the use of channel inhibitors and a K-ionophore. Sperm motility was measured using a CASA system, intracellular K+ and pH were measured by flow cytometry, and sperm head area was measured by ASMA: Automated Sperm Morphometry Analyses. Sperm motility was notably inhibited by the removal of K+ from the seminal plasma and by treatment with the K+ ionophore valinomycin. This therefore indicates that a reduction of K+ levels in the quiescent stage inhibits further motility. The normal decrease in sperm head area induced by seawater activation was altered by the removal of K+ from the seminal plasma, and an increase in the pH; in the quiescent stage was also induced. Intracellular pH (pH;) was quantitatively measured for the first time in European eel spermatozoa, being 7.2 in the quiescent stage and 7.1 post-activation. Intracellular and external pH levels influenced sperm motility both in the quiescent stage and at activation. The alkalinization of the pH; (by NH4Cl) inhibited sperm motility activation, while acidification (by Na-acetate) did not have any effect. Our results indicate that a pH gradient between the sperm cell and the seminal plasma is necessary for sperm motility activation. The presence of the ion K+ in the seminal plasma (or in the extender medium) is necessary in order to maintain sperm volume, intracellular pH and sperm motility.Funded from the SPERMOT project (Spanish Ministry of Science and Innovation, MINECO AGL2010-16009). M.C. Vilchez has a predoctoral grant from UPV PAID Subprogramme 2 (2011-S2-02-6521), Marina Morini has a predoctoral grant from Generalitat Valenciana (Programa Grisolia, GRISOLIA/2012/006), Victor Gallego has a postdoctoral contract from UPV (PAID-10-14), and David S. Penaranda was supported by MICINN (PTA2011-4948-1) and UPV (PTA2011-4948-I). Grants to attend meetings were received from COST Office (AQUAGAMETE COST Action: FA1205).Vilchez Olivencia, MC.; Morini, M.; Peñaranda, D.; Gallego Albiach, V.; Asturiano Nemesio, JF.; Pérez Igualada, LM. (2017). Role of potassium and pH on the initiation of sperm motility in the European eel. Comparative Biochemistry and Physiology Part A Molecular & Integrative Physiology. 203:210-219. https://doi.org/10.1016/j.cbpa.2016.09.024S21021920

    Complete Genome Sequence of Streptomyces sp. Strain CCM_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts

    Get PDF
    Here, we present the complete genome sequence of Streptomyces sp. strain CCM_MD2014 (phylum Actinobacteria), isolated from surface soil in Woods Hole, MA. Its single linear chromosome of 8,274,043 bp in length has a 72.13% G+C content and contains 6,948 coding sequences
    corecore