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Resolving the complexity of the human genome
using single-molecule sequencing
Mark J. P. Chaisson1, John Huddleston1,2, Megan Y. Dennis1, Peter H. Sudmant1, Maika Malig1, Fereydoun Hormozdiari1,
Francesca Antonacci3, Urvashi Surti4, Richard Sandstrom1, Matthew Boitano5, Jane M. Landolin5, John A. Stamatoyannopoulos1,
Michael W. Hunkapiller5, Jonas Korlach5 & Evan E. Eichler1,2

The human genome is arguably the most complete mammalian
reference assembly1–3, yet more than 160 euchromatic gaps remain4–6

and aspects of its structural variation remain poorly understood ten
years after its completion7–9. To identify missing sequence and gen-
etic variation, here we sequence and analyse a haploid human genome
(CHM1) using single-molecule, real-time DNA sequencing10. We close
or extend 55% of the remaining interstitial gaps in the human GRCh37
reference genome—78% of which carried long runs of degenerate
short tandem repeats, often several kilobases in length, embedded
within (G1C)-rich genomic regions. We resolve the complete sequence
of 26,079 euchromatic structural variants at the base-pair level, includ-
ing inversions, complex insertions and long tracts of tandem repeats.
Most have not been previously reported, with the greatest increases
in sensitivity occurring for events less than 5 kilobases in size. Com-
pared to the human reference, we find a significant insertional bias
(3:1) in regions corresponding to complex insertions and long short
tandem repeats. Our results suggest a greater complexity of the human
genome in the form of variation of longer and more complex repet-
itive DNA that can now be largely resolved with the application of
this longer-read sequencing technology.

Data generated by single-molecule, real-time (SMRT) sequencing
technology differ drastically from most sequencing platforms because
native DNA is sequenced without cloning or amplification, and read
lengths typically exceed 5 kilobases (kb). Despite overall lower individual
read accuracy (,85%), longer read length facilitates high confidence
mapping across a greater percentage of the genome11,12.We generated
,40-fold sequence coverage from a human CHM1 hydatidiform mole
using long-read SMRT sequence technology (average mapped read
length 5 5.8 kb; Supplementary Table 1). We selected a complete hyda-
tidiform mole to sequence because it is haploid, lacking allelic variation,
and provides higher effective sequence coverage. We aligned 93.8% of
all sequence reads to the human reference genome (GRCh37) using a
modified version of BLASR11 (Supplementary Information) and gener-
ated local assemblies of the mapped reads using Celera13 and Quiver14,
the latter of which leverages estimates of insertion, deletion and substi-
tution probabilities to determine consensus sequences accurately. We
compared the consensus sequences of regions with previously sequenced
and assembled large-insert bacterial artificial chromosome (BAC) clones
generated from CHM1tert (ref. 15). The comparison shows a consensus
sequencing concordance of .99.97% (phred quality 5 37.5), with 72%
of the errors confined to indels within homopolymer stretches (Sup-
plementary Table 3).

We initially assessed whether the mapped reads could facilitate clos-
ure of any of the 164 interstitial euchromatic gaps within the human
reference genome (GRCh37). We extended into gap regions using a
reiterative map-and-assemble strategy, in which SMRT whole-genome
sequencing (WGS) reads mapping to each edge of a gap were assembled
into a new high-quality consensus, which, in turn, served as a template

for recruiting additional sequence reads for assembly (Supplementary
Information). Using this approach, we closed 50 gaps and extended into
40 others (60 boundaries), adding 398 kb and 721 kb of novel sequence
to the genome, respectively (Supplementary Table 4). The closed gaps
in the human genome were enriched for simple repeats, long tandem
repeats, and high (G1C) content (Fig. 1) but also included novel exons
(Supplementary Table 20) and putative regulatory sequences based on
DNase I hypersensitivity and chromatin immunoprecipitation followed
by high-throughput DNA sequencing (ChIP-seq) analysis (Supplemen-
tary Information). We identified a significant 15-fold enrichment of short
tandem repeats (STRs) when compared to a random sample (P , 0.00001)
(Fig. 1a). A total of 78% (39 out of 50) of the closed gap sequences were
composed of 10% or more of STRs. The STRs were frequently embedded
in longer, more complex, tandem arrays of degenerate repeats reach-
ing up to 8,000 bp in length (Extended Data Fig. 1a–c), some of which
bore resemblance to sequences known to be toxic to Escherichia coli16.
Because most human reference sequences17,18 have been derived from
clones propagated in E. coli, it is perhaps not surprising that the appli-
cation of a long-read sequence technology to uncloned DNA would
resolve such gaps. Moreover, the length and complex degeneracy of these
STRs embedded within (G1C)-rich DNA probably thwarted efforts to
follow up most of these by PCR amplification and sequencing.

Next, we developed a computational pipeline (Extended Data Fig. 2)
to characterize structural variation systematically (structural variation
defined here as differences $50 bp in length, including deletions, dupli-
cations, insertions and inversions7). Structural variants were discovered
by mapping SMRT sequencing reads to the human reference genome11
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USA. 3Dipartimento di Biologia, Università degli Studi di Bari ‘Aldo Moro’, Bari 70125, Italy. 4Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania15261, USA. 5Pacific Biosciences of
California, Inc., Menlo Park, California 94025, USA.

P = 0.02712

P = 0.00003

P < 0.00001

0

25

50

75

100

(G
+

C
) 
c
o

n
te

n
t

Reference flank

Gap closure

Tandem repeat
P < 2.2 × 10–16

0.00

0.25

0.50

0.75

1.00

Gaps Reference

P
ro

p
o

rt
io

n
 o

f 
re

g
io

n
 w

it
h
 s

im
p

le
 r

e
p

e
a
ts

a b

G
ap

 o
nl
y

Ta
nd

em
 re

pea
ts

G
ap

 w
ith

ou
t 

ta
nd

em
 re

pea
ts

Sam
ple

d re
fe

re
nc

e

Figure 1 | Sequence content of gap closures. a, Gap closures are enriched
for simple repeats compared to equivalently sized regions randomly sampled
from GRCh37. b, Human genome gaps typically consist of (G1C)-rich
sequence (yellow) flanking complex (A1T)-rich STRs (green) (empirical
P value; Supplementary Information). Red line indicates genomic (G1C)
content.
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and searching for specific mapping signatures (Supplementary Infor-
mation). At every variant locus, we recruited all uniquely mapping reads,
created a local de novo assembly, defined breakpoints compared to the
human reference, and classified each structural variant by type and pro-
bable mechanism (Table 1). We identified a total of 26,079 insertions/
deletions $50 bp within the euchromatic portion of the genome. Almost
all insertion and deletion breakpoints were resolved at the single-base-
pair level, generating one of the most comprehensive catalogues of struc-
tural variation (47,238 breakpoint positions). A total of 6,796 of the events
map within 3,418 genes with a subset of events (169) corresponding to
variation in the spliced transcripts of 140 genes (Supplementary Table 9).
From all targeted sequencing experiments combined (Supplementary
Information) we estimate an overall validation rate of 97%, of which only
a fraction can be detected by application of Illumina next-generation
sequencing.

Of all copy number differences found, 85% were novel compared to
previous studies of structural variation7,8,19, in large part owing to increased
ascertainment of smaller variation (average length 497 bp). The effect
was most pronounced for insertions in which 92% of all differences had
not been previously reported, in contrast to deletions in which 69% of
the events were novel (Fig. 2). When comparing the size distribution of
insertions and deletions between the two haplotype references, we found
that insertions within CHM1 were longer and more abundant with 5,473
additional insertion events when compared to the human reference
(Table 1). This difference contributes to a significant insertional bias of
3.9 megabases (Mb) of additional sequence either missing or expanded
when compared to the human reference (Table 1). We find a substan-
tial increase in the amount of long, $50 bp STR insertions relative to
deletions (P , 2.2 3 10216), including STRs within genes (Supplemen-
tary Table 9). In addition to being 2.80 times more frequent than dele-
tions, the STR insertions $50 bp are, on average, 2.87 times longer. This
asymmetry becomes more pronounced with increasing STR insertion
length (Fig. 2b). The genomic distribution of STR insertions is highly
non-random being biased to the last 5 Mb of human chromosomes
(Extended Data Fig. 3) correlating with recombination rate20 (r2 5 0.21)
and human–chimpanzee divergence (r2 5 0.20). We note that 2,285 of
these expanded STRs occur within genes, including 11 within an un-
translated region (noting shorter insertions in FMR1 and C9orf72, a
common mutated locus for amyotrophic lateral sclerosis; Supplementary
Information) and two within the coding sequence of genes (MUC2 and

SAMD1). A total of 189 genes have an STR expansion .1 kb, representing
potential sites of genomic instability (Supplementary Table 9).

The remaining half of the insertional bias (,1.5 Mb) was accounted
for by 1,116 more complex structural variants (which we define as inser-
tions having either several annotated repeat elements, or at least 30% of

Table 1 | Structural variation between CHM1 and GRCh37
Insertion Deletion Ins/del

Number Mean length Total bases Number Mean length Total bases Total events Total bases

STR .10 bp 6,007 295 1,771,948 2,986 90 268,075 2.01 6.61
STR $ 50 bp 4,289 398 1,706,524 1,530 139 212,957 2.80 8.01
STR .10, , 50 bp 1,718 38 65,424 1,456 38 5,518 1.18 11.86

Tandem repeat 2,760 303 836,474 2,398 182 4,361,598 1.15 0.19
MEI 2,149 497 1,200,647 2,084 428 841,617 1.03 1.43

AluY 859 302 259,810 859 302 259,220 1.00 1.00
LINE/L1Hs 145 2,412 349,780 141 2,411 339,971 1.03 1.03
SVA 457 369 168,762 382 274 104,589 1.20 1.61
HERV 58 338 19,619 60 180 10,779 0.97 1.82
Alu1STR/Alu1mosaic 287 413 118,486 186 262 46,905 1.54 2.53
Inactive 343 226 77,602 456 176 80,153 0.75 0.97

Centromeric satellites 669 693 463,687 817 722 590,223 0.82 0.79
HSAT 46 861 39,604 48 790 37,935 0.96 1.04
ALR 622 681 423,453 769 718 552,288 0.81 0.77

Other 168 112 18,790 277 98 27,144 0.61 0.69
Complex 1,115 1,927 2,148,642 317 2,066 654,834 3.52 3.28
Unannotated 2,386 60 143,598 2,313 62 143,559 1.03 1.00
Total 17,851 398 7,112,381 11,819 271 3,208,633 1.51 2.22
Euchromatic subtotal 15,776 390 6,149,335 10,303 248 2,559,644 1.53 2.40

Euchromatic subtotal
($50 bp)

9,638 542 5,237,445 6,111 358 2,189,837 1.58 2.39

The statistics of insertion and deletion events in CHM1 compared to GRCh37 are listed by sequence category. Low complexity sequence is divided between STRs and variable number tandem repeats
(Supplementary Information). AluY, L1Hs, SVA and HERV are active mobile elements. Alu indel events in conjunction with STR sequences or mosaic Alu are considered separately from solitary AluY mobile element
insertions (MEIs). Inactive mobile element insertions include L1P and AluS. Rarely observed elements (,10) are combined as ‘Other’. Classes of structural variation showing an insertional bias (.2.5-fold excess in
CHM1) are in bold.
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Figure 2 | Structural variation analyses. a, Histograms display the
distribution of novel insertions (black/grey) and deletions (red/pink)
between CHM1 and GRCh37 haplotypes compared to copy number variants
identified from other studies for insertions and deletions less than 1 kb (left)
and greater than or equal to 1 kb (right). Most of the increased sensitivity occurs
below 5 kb. Peaks at ,300 bp and 6 kb correspond to Alu and L1 insertions,
respectively. b, STR insertions in CHM1 (green) are longer than the human
genome (blue; GRCh37), and this effect becomes more pronounced with
increasing length (x axis). c, The percentage repeat composition (x axis) of
1-kb sequences flanking insertion sites for Alu, L1 and SVA mobile element
insertions. Insertion calls from the 1000 Genomes Project (pink)21 compared to
calls from CHM1 using SMRT reads (blue) show increased sensitivity for
repeat-rich insertions.
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the remaining sequence not annotated as repeat) (Table 1 and Extended
Data Fig. 4). Sequence analyses of these regions of the genome revealed
these insertions were frequently embedded within regions already enriched
for clusters of mobile element insertions. Complex repetitive regions
such as these represent a major challenge in structural variant detection
owing to spurious mapping of short-read sequence data. We performed
site complexity analysis of annotated mobile element insertion loci
by assessing the repeat composition of the 1-kb sequences 59 and 39

flanking the retrotransposons AluY, L1 and SVA insertions in both the
CHM1 sequencing data and insertion sites from population-scale low-
coverage sequencing data21. While we observed a small bias in the re-
peat complexity of AluY insertions (53% versus 48%; P 5 4.8 3 1026,
Kolmogorov–Smirnov test), a much more marked shift is seen for L1
and SVA insertions. We found that human-specific L1Hs insertion sites
in CHM1 have a flanking common repeat content of 59% when com-
pared to 39% in the 1000 Genomes Project data set (P 5 1.8 3 10210,
Kolmogorov–Smirnov test) (Fig. 2c). The bias for SVA insertions is even
greater, with 76% of insertions mapping adjacent to repeats when
compared to 50% using Illumina read-pair data (P 5 3.84 3 10214,
Kolmogorov–Smirnov test).

The large STR and complex insertions are enriched for regions anno-
tated as having potential clone assembly problems. This enrichment
becomes more pronounced the larger and more complex the insertion
(for example, the 185-fold enrichment of ‘black tag’ annotations for
STR insertions; Supplementary Information). Notably, less than 1% of
these variants are present in newer assemblies of the human genome,
including GRCh38 and CHM1.1 (ref. 22) (derived primarily by Illumina
sequencing technology). Because we find evidence of most of these
complex events in additional human or chimpanzee genomes (Sup-
plementary Information), we propose that ,1,700 sites (3.5 Mb) rep-
resent deficiencies or ‘muted’ gaps that can now be accessed as a result
of SMRT technology (Supplementary Table 7). We incorporated these
inserted sequences as well as gap closures into a patched GRCh37 ref-
erence, effectively mapping 0.026% additional Illumina reads and dis-
covering additional single nucleotide polymorphisms (SNPs) (for example,
9,231 SNPs; Supplementary Information).

In addition to insertions and deletions, we also searched for the pres-
ence of inversions—a structural variation class that is notoriously dif-
ficult to ascertain. We developed a search algorithm that specifically
leveraged the increased length of the SMRT sequence reads to search
for ‘reversals’ in order when aligned to the reference. Regions with two
or more reversals were then locally assembled to define the breakpoints
of each event optimally. We identified 34 inversions with an average
length of 7.1 kb, corresponding to a total of ,240 kb of inverted sequence
(Supplementary Table 8 and Supplementary Fig. 6). We subcloned and
sequenced 15 events using a large-insert BAC library with a validation
rate of 100% (15 out of 15) (Extended Data Fig. 5). None of the events
disrupted genes, no enrichment was observed on the X chromosome,

and 68% (23 out of 34) of the inversions were flanked by inverted
repeats (Supplementary Table 8).

A limitation of our approach is its dependence on the local assembly
of mapped reads to the human reference genome. Even with an average
mapped read length of 5.8 kb, not all reads may be uniquely mapped to
a specific location. As a result, gaps (n 5 82) adjacent to segmental dup-
lications were largely unresolved, inversions exceeding the read length
(.20 kb) could not be detected (for example, 15q13.3 region), and
SMRT sequence read synthesis within or flanking long, highly identical
repeats could not be reliably assembled. We identified a total of 737
euchromatic regions (12.5 Mb) of our genome, in which large-scale map-
ping inconsistences (n 5 22) or deficiencies (n 5 715) were noted but
were unresolvable by this approach (Supplementary Tables 26 and 27).
We selected one 6.5-Mb region mapping to chromosome 10q11.23
for a more detailed analysis. The region carried seven gaps within the
human reference genome (GRCh37), none of which was resolved or
extended by SMRT WGS reads. We applied an alternative clone-based
hierarchical approach (Supplementary Information) and identified a
tiling path of 32 BACs and assembled the clone inserts using SMRT
sequencing14. We generated sequence contigs spanning two large clusters
of segmental duplication (2.7 and 1.2 Mb), closing six of the seven gaps
in this region (Fig. 3 and Extended Data Fig. 6), adding 416 kb of miss-
ing reference sequence, correcting the orientation of 1,451 kb, and elim-
inating 856 kb of redundant sequence that was represented twice within
the reference. Two gaps remain, each at the same location within para-
logous segmental duplications, corresponding to a nearly perfect 50-kb
tandem repeat that cannot be resolved at the level of large-insert clones
using existing methods. These results indicate that although it is possi-
ble to use reads to close gaps and detect variation missed by other next-
generation sequencing methods, the resolution of larger, complex regions
of the genome still require targeted efforts that leverage both clones and
WGS data. Complete de novo assembly of human genomes will probably
require the development of even longer-range sequencing data. The
approaches outlined here will have broader application to many of the
unfinished and complex regions of mammalian genomes.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
SMRT WGS data (41-fold sequence coverage) was generated using a Pacific Bio-
sciences RSII instrument (P5C3 chemistry) from genomic libraries generated from
a complete hydatidiform mole DNA (CHM1tert). Sequence reads were mapped to
the human reference genome (GRCh37) using a modified version of BLASR (http://
www.github.com/EichlerLab/blasr) (Supplementary Methods); a bioinformatics
pipeline was developed to identify regions of structural variation and extensions into
gaps (http://www.github.com/EichlerLab/chm1_scripts); corresponding sequence
reads were de novo assembled and a high-quality consensus sequence generated for
each region using Celera v.8.1 (ref. 13) and Quiver v.0.7.6 (ref. 14). Reads are selected
for support of a variant if the mapping quality is greater than 20; a minimum of
5 reads are required to trigger an assembly. For the purpose of this analysis, we focused
only on the euchromatic portion of the genome excluding pericentromeric regions
(5 Mb flanking annotated centromeres), all acrocentric portions of chromosomes,
and subtelomeric regions (150 kb from the annotated telomeric sequence). Repeat
content of all structural variants was determined using CENSOR24, RepeatMasker25,
Miropeats23 and TRF (http://tandem.bu.edu/). The sequence accuracy of the assemblies

and structural variant polymorphisms were inferred by comparison to 18 sequenced
large-insert BAC (CH17) and 89 fosmid clones8, Sanger-based BAC-end sequence
generated for CHM1tert (GenBank accessions in Supplementary Table 35), and
comparison to Illumina-based WGS generated for human genomes1. We also gen-
erated Illumina WGS data (41-fold) for comparison (SRA SRP044331). For the
chromosome 10q11 region, 125 CH17 BACs were identified and sequenced using a
Nextera-Illumina protocol26. A minimal tiling path of 35 clones was deeply sequenced
(300-fold coverage) using 1 SMRT cell per clone; inserts were assembled and an
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Extended Data Figure 1 | Sequence content of gap closures. a–c, Gap
closures are enriched for simple repeats compared to equivalently sized
regions randomly sampled from GRCh37; examples of the organization
of these regions are shown using Miropeats for chromosome 4
(GRCh37, chr4:59724333–59804333) (a), chromosome 11 (GRCh37,

chr11:87673378–87753378) (b), and chromosome X (GRCh37,
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degenerate STRs with the core motif highlighted below. Shared sequence motifs
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Extended Data Figure 2 | Variant detection pipeline. At every variant locus,
we collected the full-length reads that overlap the locus, performed de novo
assembly using the Celera assembler, and called a consensus using Quiver after
remapping reads used in the assembly as well as reads flanking the assembly
(yellow reads) to increase consensus quality at the boundaries of the assembly.
BLASR is used to align the assembly consensus sequences to the reference,

and insertions and deletions in the alignments are output as variants.
Reads spanning a deletion event within a single alignment are shown as bars
connected by a solid line, and double hard-stop reads spanning a larger deletion
event and split into two separate alignments of the same read are shown as a
dotted line.
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Extended Data Figure 4 | Confirmation of complex insertions in additional
genomes. Top, genotypes of polymorphic complex regions using read depth of
unique k-mers (blue: present; white: absent). Bottom, extended examples of
complex insertion events: alignment to chimpanzee panTro4 reference

(dark blue); existing human reference hg19 (light teal); inserted sequence (dark
teal). The bottom rows show repeat annotations, with darker hues for repeats
overlapping the inserted region.
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Extended Data Figure 5 | Inversion validation by BAC-insert sequencing.
Inversions detected by alignment of single long reads were validated by
sequencing clones from the CHM1 BAC library (CHORI17), in which end
mappings to GRCh37 spanned the putative inversions. Inversions were

validated by aligning the corresponding BAC sequences to GRCh37 with
Miropeats. Shared sequence between the BACs and GRCh37 is shown in black;
inversion events are indicated in red.
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Extended Data Figure 6 | CHM1 clone-based assembly of the human 10q11
genomic region. a, The clone-based assembly is composed primarily of BACs
from the CH17 library as shown in the tiling path below the internal repeat
structure of the region. Coloured arrows indicate large segmental duplications
with homologous sequences connected by coloured lines (Miropeats). Genes

annotated from alignment of RefSeq messenger RNA sequences with GMAP27

are shown. b, Miropeats comparisons of the 10q11 clone-based assembly
against the corresponding sequence from GRCh37, with gaps shown in red,
highlight the degree to which the reference was misassembled.
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